UOJ37. 【清华集训2014】主旋律
题解
题目是让我们求出有多少个边集可以使这张图强连通。
先补集转化一下,求这张图不强连通的方案数。
我们考虑这样的图缩完点之后的情况,既然不强连通,那么它就是个\(DAG\)。
回顾一下有向图\(DAG\)计数的方法。
每次新加入一层入度为\(0\)的点,向之前的点连边。但这时我们不能保证我们枚举的点就是全部入度为\(0\)的,所以我们还需要容斥。
\]
再次观察到容斥系数之和点数的奇偶性有关,因为此时我们的每个点已经是一个强连通分量了。
所以我们设\(deg[s]\)表示\(s\)集合是一个\(DAG\),如果求出了这个数组,那么我们用全集减去它就是答案了。
我们再设\(D[s]\)表示\(s\)集合被划分为奇数个强连通分量的方案数,\(S[s]\)表示划分为偶数个强连通分量的方案数。
转移:
\]
最后加上自己连自己的方案数是因为我们的容斥系数已经弄好了,只需要让\(S-T\)缩完点之后成为一个\(DAG\)就行了,所以合法的边集是全集。
我们最后的答案\(f[s]\)表示\(s\)集合强连通的方案数,\(D\)和\(S\)的转移有:
\]
\]
代码
#include<bits/stdc++.h>
#define N 16
#define M 225
using namespace std;
typedef long long ll;
const int mod=1e9+7;
int n,m;
ll D[1<<N],S[1<<N],ci[N*N],f[1<<N];
bitset<M>in[1<<N],out[1<<N];
inline void MOD(ll &x){x=x>=mod?x-mod:x;}
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
inline int calc(int s,int t){return (out[s]&in[t]).count();}
int main(){
n=rd();m=rd();
int u,v;
int maxn=(1<<n)-1;
ci[0]=1;
for(int i=1;i<=n*n;++i)ci[i]=ci[i-1]*2%mod;
for(int i=1;i<=m;++i){
u=rd();v=rd();
for(int j=1;j<=maxn;++j){
if(j&(1<<u-1))out[j][i]=1;
if(j&(1<<v-1))in[j][i]=1;
}
}
S[0]=1;
for(int i=1;i<=maxn;++i){
f[i]=ci[calc(i,i)];
for(int s=(i-1)&i;s;s=(s-1)&i){
MOD(f[i]=(f[i]-(D[s]-S[s])*ci[calc(s,i-s)+calc(i-s,i-s)]%mod+mod));
if((s&(i&-i))==0)continue;
MOD(D[i]+=f[s]*S[i-s]%mod);
MOD(S[i]+=f[s]*D[i-s]%mod);
}
MOD(f[i]=(f[i]-(D[i]-S[i]))%mod+mod);
MOD(D[i]+=f[i]);
}
cout<<f[maxn];
return 0;
}
UOJ37. 【清华集训2014】主旋律的更多相关文章
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- BZOJ3812 清华集训2014 主旋律
直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的. 非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集. 由于$n$很小,我们可以考虑状态压缩. 对于点集$S$, ...
- 【UOJ#37】 [清华集训2014] 主旋律
题目链接 题目描述 给定一张强联通图,求有多少种边的存在情况满足图依然强联通. \(n\leq15\) Sol 首先正难则反,考虑用总数减去不强联通的. 考虑一张不强联通的图,缩点后一定是一个 DAG ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...
- 清华集训2014 sum
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...
- 清华集训2014 day1 task2 主旋律
题目 这可算是一道非常好的关于容斥原理的题了. 算法 好吧,这题我毫无思路,直接给正解. 首先,问题的正面不容易求,那么就求反面吧: 有多少种添加边的方案,使得这个图是DAG图(这里及以下所说的DAG ...
- UOJ#37. 【清华集训2014】主旋律
题目大意: 传送门 题解: 神题……Orz. 首先正难则反. 设$f_S$表示选取点集状态为s时,这部分图可以构成非强联通图的方案数. 设$p_{S,i}$表示点集s缩点后有i个入度为0点的方案数,保 ...
随机推荐
- Java——HashMap源码解析
以下针对JDK 1.8版本中的HashMap进行分析. 概述 哈希表基于Map接口的实现.此实现提供了所有可选的映射操作,并且允许键为null,值也为null.HashMap 除了不支持同步操 ...
- .net core 学习小结之 Cookie-based认证
在startup中添加授权相关的管道 using System; using System.Collections.Generic; using System.Linq; using System.T ...
- Docker中的Dockerfile命令详解FROM RUN COPY ADD ENTRYPOINT...
Dockerfile指令 这些建议旨在帮助您创建高效且可维护的Dockerfile. FROM FROM指令的Dockerfile引用 尽可能使用当前的官方图像作为图像的基础.我们推荐Alpine图像 ...
- spring boot 整合activemq
1 Spring Boot与ActiveMQ整合 1.1使用内嵌服务 (1)在pom.xml中引入ActiveMQ起步依赖 <properties> <spring.version& ...
- HDU-4857 逃生(反向拓扑排序 + 逆向输出)
逃生 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submissi ...
- HNUSTOJ-1520 压缩编码
1520: 压缩编码 时间限制: 1 Sec 内存限制: 2 MB提交: 107 解决: 54[提交][状态][讨论版] 题目描述 某工业监控设备不断发回采样数据.每个数据是一个整数(0到1000 ...
- Composer学习
Composer简介 Composer是PHP的一个依赖管理工具,不是包管理器:在项目中声明所依赖的外部工具库(libraries),Composer会自动安装止血工具库及依赖的库文件. 安装方式 C ...
- Ubuntu16.04 php7.1安装redis扩展
sudo apt install php7.1-redis //修改php配置 vi /etc/php.ini 添加extension=redis.so
- 【转】交换分区SWAP
SWAP就是LINUX下的虚拟内存分区,它的作用是在物理内存使用完之后,将磁盘空间(也就是SWAP分区)虚拟成内存来使用. 它和Windows系统的交换文件作用类似,但是它是一段连续的磁盘空间,并且对 ...
- Comet OJ - Contest #5 D 迫真小游戏 (堆+set)
迫真小游戏 已经提交 已经通过 时间限制:2000ms 内存限制:256MB 73.98% 提交人数:196 通过人数:145 题目描述 H君喜欢在阳台晒太阳,闲暇之余他会玩一些塔防小游戏. H君玩的 ...