http://uoj.ac/problem/37

题解

题目是让我们求出有多少个边集可以使这张图强连通。

先补集转化一下,求这张图不强连通的方案数。

我们考虑这样的图缩完点之后的情况,既然不强连通,那么它就是个\(DAG\)。

回顾一下有向图\(DAG\)计数的方法。

每次新加入一层入度为\(0\)的点,向之前的点连边。但这时我们不能保证我们枚举的点就是全部入度为\(0\)的,所以我们还需要容斥。

\[f[S]=\sum_{T\subset S}(-1)^{|T|}f[S-T]2^{edge(S,S-T)}
\]

再次观察到容斥系数之和点数的奇偶性有关,因为此时我们的每个点已经是一个强连通分量了。

所以我们设\(deg[s]\)表示\(s\)集合是一个\(DAG\),如果求出了这个数组,那么我们用全集减去它就是答案了。

我们再设\(D[s]\)表示\(s\)集合被划分为奇数个强连通分量的方案数,\(S[s]\)表示划分为偶数个强连通分量的方案数。

转移:

\[dag[S]=\sum_{T\subset S}(D[S]-S[S])*2^{edge(T,S-T)+edge(S-T,S-T)}
\]

最后加上自己连自己的方案数是因为我们的容斥系数已经弄好了,只需要让\(S-T\)缩完点之后成为一个\(DAG\)就行了,所以合法的边集是全集。

我们最后的答案\(f[s]\)表示\(s\)集合强连通的方案数,\(D\)和\(S\)的转移有:

\[D[S]=\sum_{T\subset S}f[T]*S[S-T]
\]

\[S[S]=\sum_{T\subset S}f[T]*D[S-T]
\]

代码

#include<bits/stdc++.h>
#define N 16
#define M 225
using namespace std;
typedef long long ll;
const int mod=1e9+7;
int n,m;
ll D[1<<N],S[1<<N],ci[N*N],f[1<<N];
bitset<M>in[1<<N],out[1<<N];
inline void MOD(ll &x){x=x>=mod?x-mod:x;}
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
inline int calc(int s,int t){return (out[s]&in[t]).count();}
int main(){
n=rd();m=rd();
int u,v;
int maxn=(1<<n)-1;
ci[0]=1;
for(int i=1;i<=n*n;++i)ci[i]=ci[i-1]*2%mod;
for(int i=1;i<=m;++i){
u=rd();v=rd();
for(int j=1;j<=maxn;++j){
if(j&(1<<u-1))out[j][i]=1;
if(j&(1<<v-1))in[j][i]=1;
}
}
S[0]=1;
for(int i=1;i<=maxn;++i){
f[i]=ci[calc(i,i)];
for(int s=(i-1)&i;s;s=(s-1)&i){
MOD(f[i]=(f[i]-(D[s]-S[s])*ci[calc(s,i-s)+calc(i-s,i-s)]%mod+mod));
if((s&(i&-i))==0)continue;
MOD(D[i]+=f[s]*S[i-s]%mod);
MOD(S[i]+=f[s]*D[i-s]%mod);
}
MOD(f[i]=(f[i]-(D[i]-S[i]))%mod+mod);
MOD(D[i]+=f[i]);
}
cout<<f[maxn];
return 0;
}

UOJ37. 【清华集训2014】主旋律的更多相关文章

  1. 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理

    题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...

  2. BZOJ3812 清华集训2014 主旋律

    直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的. 非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集. 由于$n$很小,我们可以考虑状态压缩. 对于点集$S$, ...

  3. 【UOJ#37】 [清华集训2014] 主旋律

    题目链接 题目描述 给定一张强联通图,求有多少种边的存在情况满足图依然强联通. \(n\leq15\) Sol 首先正难则反,考虑用总数减去不强联通的. 考虑一张不强联通的图,缩点后一定是一个 DAG ...

  4. uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题

    [清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...

  5. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  6. UOJ#46. 【清华集训2014】玄学

    传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...

  7. 清华集训2014 sum

    清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...

  8. 清华集训2014 day1 task2 主旋律

    题目 这可算是一道非常好的关于容斥原理的题了. 算法 好吧,这题我毫无思路,直接给正解. 首先,问题的正面不容易求,那么就求反面吧: 有多少种添加边的方案,使得这个图是DAG图(这里及以下所说的DAG ...

  9. UOJ#37. 【清华集训2014】主旋律

    题目大意: 传送门 题解: 神题……Orz. 首先正难则反. 设$f_S$表示选取点集状态为s时,这部分图可以构成非强联通图的方案数. 设$p_{S,i}$表示点集s缩点后有i个入度为0点的方案数,保 ...

随机推荐

  1. axios入门使用

    vue项目中axios的基本使用和简单封装 axios中文文档官网 http://www.axios-js.com/docs/ 一:不封装直接使用 npm install axios 在main.js ...

  2. ascx

    aspx是页面文件ascx是用户控件,用户控件必须嵌入到aspx中才能使用. ascx是用户控件,相当于模板 其实ascx你可以理解为Html里的一部分代码,只是嵌到aspx里而已,因为aspx内容多 ...

  3. [Web 前端] 031 bootstrap 的使用和全局 css 样式

    目录 0. 前言 1. 基本模板 2. 布局容器 2.1 container 2.2 container-fluid 3. 栅格系统 3.1 简介 3.2 栅格参数 3.3 实例:从堆叠到水平排列 2 ...

  4. [LeetCode] 212. 单词搜索 II

    题目链接:https://leetcode-cn.com/problems/word-search-ii/ 题目描述: 给定一个二维网格 board 和一个字典中的单词列表 words,找出所有同时在 ...

  5. 搜索专题:HDU1241 Oil Deposits

    Oil Deposits Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  6. RabbitMQ事务和Confirm发送方消息确认

    RabbitMQ事务和Confirm发送方消息确认——深入解读 RabbitMQ系列文章 RabbitMQ在Ubuntu上的环境搭建 深入了解RabbitMQ工作原理及简单使用 RabbitMQ交换器 ...

  7. CentOS服务器安装Anaconda

    今天拿到了服务器,但是需要的环境都没有,从头开始配. 需要的环境很多,从装Anaconda开始. 版本相关:输入命令 cat /etc/redhat-release,我的版本是 CentOS Linu ...

  8. #define 宏实现函数功能可能存在的问题

    #define 宏实现函数功能的问题 情形1 #define free_ptr(p) \ if(p) delete p; p = nullptr; 在调用free_ptr(p)的地方展开看这段代码: ...

  9. IDEA闪退问题

    这段时间经常遇到IDEA闪退的问题,在网上搜了一大堆的博客,无外乎是说让修改下面两个文件,但是改来改去没什么卵用,最后重装IDEA,一样的,没什么用.持续时间有几个月了,内心也有点崩溃,昨天下午彻底心 ...

  10. ECMAScrip5 二

    一.ES5的严格模式 在严格模式下,声明变量必须使用 var 在严格模式下,不能使用八进制 在严格模式下,不能使用arguments.callee 在严格模式下,不能使用eval()    //eva ...