使用穷举法结合numpy解决八皇后问题
一般说到八皇后问题,最先想到的就是回溯思想,而回溯思想往往是需要递归来实现的。
计算机很善长做重复的事情,所以递归正和它的胃口,而我们人脑更喜观平铺直叙的思维方式。当
我们看到递归时,总想把递归平铺展开,脑子里就会循环,一层一层往下调,然后再一层一层返回
试图想搞清楚计算机每一步都是怎么执行的,这样就很容易被绕进去。
我就是一个例子,当用递归解决归并或快速排序时,由于问题本身不是很复杂,递归代码还是比较简单能写出来的
但八皇后,我在网上看了相应的代码,总感觉还是似懂非懂,很容易就被绕了进去。
所以我尝试用穷举的方法解决八皇后的问题,
思路如下
- 穷举每一种摆法
- 对每一种摆法,转换成nunpy array
- 分别判断每一行,每一列,每个左下对角线,每个右下对角线是否满足需要

直接看代码:
import numpy as np
import itertools
BOARD_SIZE = 8
result = [0] * BOARD_SIZE # 下标表示行,值表示列
# 将tuple 比如 (2,0,1) 转成numpy array:
#array([[0, 0, 1],
# [1, 0, 0],
# [0, 1, 0]])
def get_np_represent(result):
x = np.zeros([len(result),len(result)])
for i,v in enumerate(result):
x[i, v] = 1
return x
# 判断相应的行(横、纵、左下对角线、右下对角线)是否满足需要
def line_not_pass(np):
return (np > 1).any()
# 获取左下对角线相加的数组
def left_diag_array(np_array):
left_diag_array = [np.sum(np.diag(np.fliplr(np_array), d)) for d in range(len(np_array) - 1, -len(np_array), -1)]
return np.array(left_diag_array)
# 获取右下对角线相加的数组
def right_diag_array(np_array):
right_diag_array = [np.sum(np.diag(np_array, d)) for d in range(len(np_array) - 1, -len(np_array), -1)]
return np.array(right_diag_array)
match_count = 0
# main
for arr in itertools.product(list(range(0,BOARD_SIZE)),repeat=BOARD_SIZE):
np_array = get_np_represent(arr)
row_array = np_array.sum(axis=1)
if line_not_pass(row_array):
continue
col_array = np_array.sum(axis=0)
if line_not_pass(col_array):
continue
if line_not_pass(left_diag_array(np_array)):
continue
if line_not_pass(right_diag_array(np_array)):
continue
match_count +=1
print("total count:",match_count)
使用穷举法结合numpy解决八皇后问题的更多相关文章
- 作业:for循环,迭代法和穷举法
for()循环 四要素:初始条件,循环条件,状态改变,循环体. 执行过程:初始条件--循环条件--循环体 ...
- for循环语句以及迭代法和穷举法
循环语句: 四要素:初始条件,循环条件,状态改变,循环体 for(初始条件;循环条件;状态改变){ //循环体} 案例1:打印等腰直角三角形和菱形 左上三角 static void Main(stri ...
- C#4 for循环 迭代法 穷举法应用
for()循环. 四要素: 初始条件,循环条件,状态改变,循环体. 执行过程: 初始条件--循环条件--循环体--状态改变--循环条件.... 注意:for的小括号里面分号隔开,for的小括号后不要加 ...
- C# for 循环 迭代法 穷举法
for()循环. 四要素: 初始条件,循环条件,状态改变,循环体. 执行过程: 初始条件--循环条件--循环体--状态改变--循环条件.... 注意:for的小括号里面分号隔开,for的小括号后不要加 ...
- 【2-24】for循环嵌套,跳转语句,异常语句,穷举法、迭代法
For循环嵌套与if嵌套相似,是在for中再套for,其结构如下: For(;;) { For(;;){} }经典题型为打印星星例: Console.Write("请输入一个奇数:" ...
- 穷举法、for循环、函数、作用域、斐波那契数
1.穷举法 枚举所有可能性,直到得到正确的答案或者尝试完所有值. 穷举法经常是解决问题的最实用的方法,它实现起来热别容易,并且易于理解. 2.for循环 for语句一般形式如下: for variab ...
- C# 异常语句 跳转语句 while循环 穷举法 迭代法
一 异常语句 ♦ try.....catch....finally 结构形式 try{ 可能会出错的代码语句 如果这里出错了,那么不会在继续下面的代码,而是直接进入catch中处理异常}catc ...
- python 穷举法 算24点(史上最简短代码)
本来想用回溯法实现 算24点.题目都拟好了,就是<python 回溯法 子集树模板 系列 -- 7.24点>.无奈想了一天,没有头绪.只好改用暴力穷举法. 思路说明 根据四个数,三个运算符 ...
- 基本算法思想之穷举法(C++语言描述)
穷举算法(Exhaustive Attack method)是最简单的一种算法,其依赖于计算机的强大计算能力来穷尽每一种可能性,从而达到求解问题的目的.穷举算法效率不高,但是适应于一些没有规律可循的场 ...
随机推荐
- Nginx/Nginx基础学习
Nginx与node.js 一.Nginx与Node.js Nginx是一款轻量级的HTTP服务器,采用事件驱动的异步非阻塞处理方式框架,这让其具有极好的IO性能,时常用于服务端的反向代理和负载均衡. ...
- python+selenium下弹窗alter对象处理02
首先使用switch_to.alert()方法进行定位,然后可以使用下面的操作 text:返回alert.confirm.prompt中的文字信息: accept():接受现有警告框: dismiss ...
- spring boot 异常汇总
spring boot JPA 异常: org.springframework.data.mapping.PropertyReferenceException: No property role fo ...
- linux ftp使用相关
ftp 7.7.6.201 21121 name:aaa password:123456
- 第九周总结&第七次实验报告
实验7 实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负数号票的情况. 实验过程 ...
- SwipeRefreshLayout和RecyclerView类
1 SwipeRefreshLayout和RecyclerView之间的关系 内容栏上下滚动是RecyclerView控制的,只有当内容栏滑动到最顶上时,再也拉不动了的时候,这个时候将动作交给Swip ...
- MySQL服务意外停止
先说一下,发现MySQL服务停了,启动就又好了,但是好奇服务意外停止的原因,所以看了一下MySQL的错误日志. 但是到底是哪个错误导致MySQL服务意外终止,还没有定论,故有了此篇文章,还望知道原因的 ...
- 【SSL1786】麻将游戏
题目大意: 给出一个矩阵,查询其中两个点连通线段数 正文: 看这题好眼熟... 实质和这道题是一模一样的,只不过由一条询问升级到多条询问.
- git将某个分支的代码完全覆盖另一个分支
假设每个人有个开发分支,想隔一段时间就把自己的开发分支上的代码保持和测试分支一直,则需要如下操作: 1.我想将test分支上的代码完全覆盖dev分支,首先切换到dev分支git checkout de ...
- 吴恩达深度学习:2.9逻辑回归梯度下降法(Logistic Regression Gradient descent)
1.回顾logistic回归,下式中a是逻辑回归的输出,y是样本的真值标签值 . (1)现在写出该样本的偏导数流程图.假设这个样本只有两个特征x1和x2, 为了计算z,我们需要输入参数w1.w2和b还 ...