3997: [TJOI2015]组合数学

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 405  Solved: 284
[Submit][Status][Discuss]

Description

给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。

 

Input

第一行为正整数T,代表数据组数。

每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有

Output

输出一个整数,表示至少要走多少次。

 

Sample Input

1
3 3
0 1 5
5 0 0
1 0 0

Sample Output

10

HINT

N<=1000,M<=1000.每个格子中财宝数不超过10^6

Source

把公式写出来就是∑ni=1∑nj=1Bij×Ai×Aj–∑ni=1Ai×Ci

于是可以看出是一个最大权闭合图,我要获得bij这个点的收益就要付出ci和cj的费用。

经典的最小割。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define clr(x,y) memset(x,y,sizeof(x));
#define maxn 505
#define maxm 505500
#define inf int(1e9)
using namespace std;
struct data{int obj;int pre;int c;
}e[3005000];
int head[maxm],b[maxn][maxn],c[maxn],uu[maxm],s,t,n,sum,tot=1,q[3005000];
void insert(int x,int y,int z){
e[++tot].obj=y; e[tot].c=z; e[tot].pre=head[x]; head[x]=tot;
e[++tot].obj=x; e[tot].c=0; e[tot].pre=head[y]; head[y]=tot;
}
bool bfs(){
clr(uu,-1);
int l=0,r=1; q[1]=s; uu[s]=0;
while (l<r){
int u=q[++l];
for(int j=head[u];j;j=e[j].pre){
int v=e[j].obj;
if (uu[v]==-1&&e[j].c>0) {
q[++r]=v; uu[v]=uu[u]+1;
}
}
}
if (uu[t]<0) return 0;
return 1;
}
int dfs(int u,int mx){
int used=0,w;
if (u==t||mx==0) return mx;
for(int j=head[u];j;j=e[j].pre){
int v=e[j].obj;
if (uu[v]==uu[u]+1&&e[j].c>0){
w=dfs(v,min(mx-used,e[j].c));
if (w<=0) {uu[v]=-1; continue;}
e[j].c-=w; e[j^1].c+=w; used+=w;
if (used==mx) return used;
}
}
return used;
}
int dinic(){
int ans=0;
while (bfs())
ans+=dfs(s,inf);
return ans;
}
int main(){
scanf("%d",&n);
s=0; t=n+n*n+1;
rep(i,1,n)
rep(j,1,n)
scanf("%d",&b[i][j]),sum+=b[i][j];
rep(i,1,n) scanf("%d",&c[i]),insert(n*n+i,t,c[i]);
rep(i,1,n){
rep(j,1,n){
insert(s,(i-1)*n+j,b[i][j]);
insert((i-1)*n+j,n*n+i,inf);
insert((i-1)*n+j,n*n+j,inf);
}
}
printf("%d\n",sum-dinic());
return 0;
}

BZOJ3997: [TJOI2015]组合数学(网络流)的更多相关文章

  1. bzoj3997[TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...

  2. BZOJ3997 TJOI2015组合数学(动态规划)

    copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...

  3. [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)

    题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...

  4. bzoj3997[TJOI2015]组合数学(求最长反链的dp)

    组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  5. bzoj千题计划298:bzoj3997: [TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...

  6. BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)

    Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...

  7. BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】

    题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少 ...

  8. 【BZOJ3997】[TJOI2015]组合数学(动态规划)

    [BZOJ3997][TJOI2015]组合数学(动态规划) 题面 BZOJ 洛谷 题解 相当妙的一道题目.不看题解我只会暴力网络流 先考虑要求的是一个什么东西,我们把每个点按照\(a[i][j]\) ...

  9. 【BZOJ3997】[TJOI2015]组合数学 最长反链

    [BZOJ3997][TJOI2015]组合数学 Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格 ...

随机推荐

  1. Hadoop版本选择

    刚开始学习Hadoop时就曾经一直抱怨Hadoop的安装部署为什么这么麻烦,对于一个新手需要捯饬一天才能把分布式环境安装配置好.而对于一个自学Hadoop而周围又没人交流的菜鸟来说,我对Hadoop的 ...

  2. Windows as a Service(3)——使用SCCM管理Windows10更新

    Hello 小伙伴们,这是这个系列的第三篇文章,我已经和大家分享了有关于Windows 10服务分支以及利用WSUS管理更新的方式,有兴趣的小伙伴们可以参考下面的链接: Windows as a Se ...

  3. ASP.NET Core文件上传与下载(多种上传方式)

    前言 前段时间项目上线,实在太忙,最近终于开始可以研究研究ASP.NET Core了. 打算写个系列,但是还没想好目录,今天先来一篇,后面在整理吧. ASP.NET Core 2.0 发展到现在,已经 ...

  4. 《MYSQL》----字符串的复杂函数,检索的七-天-排-重

    接到了一个新的需求,拿到需求的时候瞬间有点头大,因为实在是有些棘手. 我们这个系统本身是个接口系统,总接口数大概在200个左右.外部会有很多用户在 不同的时间拿着不同参数去调我们的这些接口,用户的调集 ...

  5. Tomcat 组件介绍

    用了好长时间tomcat,但是其实自己只是反复听了这个名字,对Tomcat并不了解 1.Tomcat组件 Catalina Coyote Jasper Cluster 2.组件介绍 Tomcat Co ...

  6. MySQL数据库学习: 02 —— 数据库的安装与配置

                             MySQL安装图解 一.MYSQL的安装 1.打开下载的mysql安装文件mysql-5.0.27-win32.zip,双击解压缩,运行“setup. ...

  7. Xamarin.Android AlertDialog中的EditText打上去字为什么不显示?也没有光标闪烁

    AlertDialog.Builder builder = new AlertDialog.Builder(this);            builder.SetTitle("请您输入管 ...

  8. linux odbc连接sql server2014

    首先坑爹呀!由于配置Zabbix 用到这个,网上资料一顿搜,一顿报错,调各种参数,依然无法连接,我竟无言以对: 这个只是项目的一小部分,只提供成功案例,没做深入研究,可以让遇到的兄弟少走弯路: 建议第 ...

  9. Spring异常处理@ExceptionHandler

    最近学习Spring时,认识到Spring异常处理的强大.之前处理工程异常,代码中最常见的就是try-catch-finally,有时一个try,多个catch,覆盖了核心业务逻辑: try{ ... ...

  10. 浏览器根对象window之screen

    1. screen 1.1 availHeight/Width screen.availWidth返回浏览器窗口可占用的水平宽度(单位:像素). screen.availHeight返回浏览器窗口在屏 ...