谱聚类(Spectral clustering)(2):NCut
作者:桂。
时间:2017-04-13 21:19:41
链接:http://www.cnblogs.com/xingshansi/p/6706400.html
声明:欢迎被转载,不过记得注明出处哦~

前言
本文为谱聚类的第二篇,主要梳理NCut算法,关于谱聚类的更多细节信息,可以参考之前的博文:
1)拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)
内容主要参考刘建平Pinard博客,更多细节可以参考该作者博文,本文最后给出代码实现,全文包括:
1)NCut原理
2)NCut算法实现
一、NCut原理
Ncut切图和RatioCut切图很类似,但是把Ratiocut的分母$|Ai|$换成$vol(A_i)$,由于子图样本的个数多并不一定权重就大,我们切图时基于权重也更合我们的目标,因此一般来说Ncut切图优于RatioCut切图。
$vol(A): = \sum\limits_{i \in A}d_i$

对应的,Ncut切图对指示向量h做了改进。注意到RatioCut切图的指示向量使用的是$\frac{1}{\sqrt{|A_j|}}$标示样本归属,而Ncut切图使用了子图权重$\frac{1}{\sqrt{vol(A_j)}}$来标示指示向量h,定义如下:

那么我们对于$h_i^TLh_i$有:

推导方式和RatioCut完全一致。也就是说,我们的优化目标仍然是

但是此时我们的$H^TH \neq I$而是$H^TDH = I$,推导如下:

也就是说,此时我们的优化目标最终为:

这个就是泛化瑞利熵的求解问题,之前文章分析过。这里再次给出细节分析。
令$H = D^{-1/2}F$,则优化目标转化为:

至此已经完成了NCut的理论。
画蛇添足一下吧,注意到:

事实上,连拉普拉斯矩阵都懒得构造了。
二、NCut算法实现
首先给出算法步骤:
步骤一:求解邻接矩阵W和度矩阵D
步骤二:对${D^{ - \frac{1}{2}}}W{D^{ - \frac{1}{2}}}$进行特征值分解,并取K个最大特征值对应的特征向量(K为类别数目)
步骤三:将求解的K个特征向量(并分别归一化),构成新的矩阵,对该矩阵进行Kmeans处理
Kmeans得到的类别标签,就是原数据的类别标签,至此完成NCut聚类。
给出代码实现:
sigma2 = 0.01;
%%Step1: Calculate matrixs
for i = 1:N
for j =1:N
W(i,j) = exp(-sqrt(sum((X(i,:)-X(j,:)).^2))/2/sigma2);
end
end
W = W-diag(diag(W));% adjacency matrix
D = diag(sum(W)); %degree matrix
%%Step2:Eigenvalues decomposition
K = 3;
[Q,V] = eigs(D^(-1/2)*W*D^(-1/2),K);
%%Step3:New matrix Q
Q = Q./repmat(sqrt(diag(Q'*Q)'),N,1);
[idx,ctrs] = kmeans(Q,K);
结果图:

测试一下,按数据为3类进行谱聚类,可以看出来还是有效的,谱聚类中高斯权重涉及到$\sigma$如何取值,不过这里就不做进一步讨论了。
参考:
谱聚类(Spectral clustering)(2):NCut的更多相关文章
- 【聚类算法】谱聚类(Spectral Clustering)
目录: 1.问题描述 2.问题转化 3.划分准则 4.总结 1.问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图 ...
- 谱聚类(Spectral Clustering)详解
谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似 ...
- 谱聚类 Spectral Clustering
转自:http://www.cnblogs.com/wentingtu/archive/2011/12/22/2297426.html 如果说 K-means 和 GMM 这些聚类的方法是古代流行的算 ...
- 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut
聚类算法是ML中一个重要分支,一般采用unsupervised learning进行学习,本文根据常见聚类算法分类讲解K-Means, K-Medoids, GMM, Spectral cluster ...
- 谱聚类算法(Spectral Clustering)优化与扩展
谱聚类(Spectral Clustering, SC)在前面的博文中已经详述,是一种基于图论的聚类方法,简单形象且理论基础充分,在社交网络中广泛应用.本文将讲述进一步扩展其应用场景:首先是User- ...
- 谱聚类算法(Spectral Clustering)
谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法--将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的 ...
- Spectral Clustering
谱聚类算法(Spectral Clustering)优化与扩展 谱聚类(Spectral Clustering, SC)在前面的博文中已经详述,是一种基于图论的聚类方法,简单形象且理论基础充分,在 ...
- 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut
原文请戳:http://blog.csdn.net/abcjennifer/article/details/8170687 聚类算法是ML中一个重要分支,一般采用unsupervised learni ...
- 谱聚类(Spectral clustering)分析(1)
作者:桂. 时间:2017-04-13 19:14:48 链接:http://www.cnblogs.com/xingshansi/p/6702174.html 声明:本文大部分内容来自:刘建平Pi ...
- 谱聚类(Spectral clustering)(1):RatioCut
作者:桂. 时间:2017-04-13 19:14:48 链接:http://www.cnblogs.com/xingshansi/p/6702174.html 声明:本文大部分内容来自:刘建平Pi ...
随机推荐
- 第35篇 IIS执行原理
服务器的监听(IIS6.0+版本) 当请求到达服务器时,请求最终会到达TCPIP.SYS驱动程序,TCPIP.SYS将请求转发给HTTP.SYS网络驱动程序的请求队列中(可以理解为专门处理http请求 ...
- 剑指offer编程题Java实现——面试题12相关题大数的加法、减法、乘法问题的实现
用字符串或者数组表示大数是一种很简单有效的表示方式.在打印1到最大的n为数的问题上采用的是使用数组表示大数的方式.在相关题实现任意两个整数的加法.减法.乘法的实现中,采用字符串对大数进行表示,不过在具 ...
- PCB行业版特色功能展示
普实PCB行业版,专为PCB行业需求而定制.秉承一体化.集团化.移动化为设计理念,采用互联网技术.云计算技术.移动应用技术开发的新一代系统帮助PCB企业创新管理模式.引领商业变革!系统从接到订单开始, ...
- 《深入理解Java虚拟机》学习笔记之工具
善于利用工具,不仅可以加快我们分析数据,还可以快速定位和解决问题.现在我们就来看看虚拟机性能监控和故障处理工具. 在JDK的bin目录可以看到sun免费送给了我们很多小工具,这些工具虽然小巧但功能强大 ...
- Java I/O之NIO概念理解
JDK1.4的java.nio.*包引入了新的Java I/O新类库,其目的在于提高速度.实际上,旧的I/O包已经使用nio重新实现过,以便充分利用这种速度提高,因此即使我们不显式地用nio编码,也能 ...
- I3D Next-Gen Game Development with Unity3D Vol I学习笔记(上)
这部教程主题是讲述如何在Unity中安放模型以及对场景进行优化(面对的是次世代平台).第二章看到一半,看不下,索性直接凭借Maya和Torque的经验自己操作. 看教程总结的原则如下(or tips) ...
- 测试不同格式下depth buffer的精度
这篇文章主要是参考MJP的“Attack of The Depth Buffer”,测试不同格式下depth buffer的精度. 测试的depth buffer包含两类: 一是非线性的depth b ...
- Java基础——第一个记事本代码与Java注释
一 .使用记事本编辑java文件: 1.打开记事本,重命名文件名,文件拓展名“.java”.(必须要的,系统才能识别java文件) 2.编写一个简单的java代码: public class Hell ...
- java 学习资源
1.tomcat版本http://tomcat.apache.org/whichversion.html 2.Servlet 2.5规范https://jcp.org/aboutJava/commun ...
- Octave Tutorial(《Machine Learning》)之第一课《数据表示和存储》
Octave Tutorial 第一课 Computation&Operation 数据表示和存储 1.简单的四则运算,布尔运算,赋值运算(a && b,a || b,xor( ...