Neural Networks: Learning

内容较多,故分成上下两篇文章。

一、内容概要

  • Cost Function and Backpropagation

    • Cost Function
    • Backpropagation Algorithm
    • Backpropagation Intuition
  • Backpropagation in Practice

    • Implementation Note:Unroll Parameters
    • Gradient Checking
    • Random Initialization
    • Putting it Together
  • Application of Neural Networks

    • Autonomous Driving

二、重点&难点

1. Backpropagation in Practice

1) Implementation Note:Unroll Parameters

本节主要讲的是利用octave实现神经网络算法的一个小技巧:将多个参数矩阵展开为一个向量。具体可以参考课程视频,此处略。

2) Gradient Checking

神经网络算法是一个很复杂的算法,所以我们很难凭直觉观察出结果是否正确,因此有必要在实现的时候做一些检查,本节给出一个检验梯度的数值化方法。

首先我们可以将损失函数的梯度近似为

\(\frac{∂J(θ)}{∂θ}≈\frac{J(θ+ε)-J(θ-ε)}{2ε}\)

推广到一般形式是:

\(\frac{∂J(θ)}{∂θ_j}≈\frac{J(θ_1,θ_2,θ_j+ε……,θ_n)-J(θ_1,θ_2,θ_j-ε……,θ_n)}{2ε}\)

一般来说ε≈\(10^{-4}\)时就比较接近了

最后我们的主要目标是检查这个梯度的近似向量与反向传播算法得到的梯度向量是否近似相等。

实现时的注意点:

  • 首先实现反向传播算法来计算梯度向量DVec;
  • 其次实现梯度的近似gradApprox;
  • 确保以上两步计算的值是近似相等的;
  • 在实际的神经网络学习时使用反向传播算法,并且关掉梯度检查。

特别重要的是:

  • 一定要确保在训练分类器时关闭梯度检查的代码。如果你在梯度下降的每轮迭代中都运行数值化的梯度计算,你的程序将会非常慢。

3) Random Initialization

关于如何学习一个神经网络的细节到目前为止基本说完了,不过还有一点需要注意,就是如何初始化参数向量or矩阵。通常情况下,我们会将参数全部初始化为0,这对于很多问题是足够的,但是对于神经网络算法,会存在一些问题,以下将会详细的介绍。

对于梯度下降和其他优化算法,对于参数向量的初始化是必不可少的。能不能将初始化的参数全部设置为0?

在神经网络中,如果将参数全部初始化为0 会导致一个问题,例如对于上面的神经网络的例子,如果将参数全部初始化为0,在每轮参数更新的时候,与输入单元相关的两个隐藏单元的结果将是相同的,既:

\(a_1^{(2)} = a_2^{(2)}\)

这个问题又称之为对称的权重问题,因此我们需要打破这种对称,这里提供一种随机初始化参数向量的方法: 初始化\(θ_{ij}^{(l)}\)为一个落在 [-ε,ε]区间内的随机数, 可以很小,但是与上面梯度检验( Gradient Checking)中的ε没有任何关系。

4)Putting it together(组合到一起-如何训练一个神经网络)

这个老师说会在后面更加具体的介绍。

关于神经网络的训练,我们已经谈到了很多,现在是时候将它们组合到一起了。那么,如何训练一个神经网络?

  • 首先需要确定一个神经网络的结构-神经元的连接模式, 包括:

    • 输入单元的个数:特征 的维数;
    • 输出单元的格式:类的个数
    • 隐藏层的设计:比较合适的是1个隐藏层,如果隐藏层数大于1,确保每个隐藏层的单元个数相同,通常情况下隐藏层单元的个数越多越好。
  • 在确定好神经网络的结构后,我们按如下的步骤训练神经网络:

      1. 随机初始化权重参数;
      1. 实现:对于每一个 通过前向传播得到;
      1. 实现:计算代价函数;
      1. 实现:反向传播算法用于计算偏导数
      1. 使用梯度检查来比较反向传播算法计算的和数值估计的的梯度,如果没有问题,在实际训练时关闭这部分代码;
      1. 在反向传播的基础上使用梯度下降或其他优化算法来最小化;

Application of Neural Networks

主要介绍了老师的一个大佬朋友利用神经网络设计的自动驾驶汽车的视频,感兴趣的可以看看。自动驾驶汽车


MARSGGBO♥原创







2017-8-6

Andrew Ng机器学习课程笔记--week5(下)的更多相关文章

  1. Andrew Ng机器学习课程笔记--week5(上)

    Neural Networks: Learning 内容较多,故分成上下两篇文章. 一.内容概要 Cost Function and Backpropagation Cost Function Bac ...

  2. Andrew Ng机器学习课程笔记--week9(下)(推荐系统&协同过滤)

    本周内容较多,故分为上下两篇文章. 本文为下篇. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian ...

  3. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  4. Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计

    Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...

  5. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  6. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  7. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  8. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  9. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

随机推荐

  1. 有关java调用批处理文件

    1 例子 java调用批处理文件 public class RunJarBat { public static void runJarBat() { // 调用控制台 Runtime rt = Run ...

  2. Unity Shader入门教程(四)反射光斑的实现

    本节内容介绍PhongModel(也就是上文说的反射光的计算模型),采用的计算方法是BlinPhong(也即是用视线方向V+光源方向L的和,与N做点积,随后幂化得到高光反射系数)下图采用了csdn博文 ...

  3. PHP通过phpmailer批量发送邮件功能

    前端页面代码: 注意:目前发送人使用的qq邮箱支持的不是特别友好.建议使用网易 新浪 163等其他邮箱. 需要用到phpmailer包 下载地址:https://sourceforge.net/pro ...

  4. vue.js中使用Axios

    Axios为vue2.0官方推荐HTTP请求工具,之前的是vue-resource 在使用的过程中总结了两种使用方式: 1.和vue-resource使用类似 引入:import axios from ...

  5. [BZOJ 1409] Password

    贴一发题面 1409: Password Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 242  Solved: 82[Submit][Status][D ...

  6. 初学Python(六)——输入输出

    初学Python(六)——输入输出 初学Python,主要整理一些学习到的知识点,这次是输入输出. 输入: # -*- coding:utf-8 -*- ''''' python中的输出为print ...

  7. 大数据算法->推荐系统常用算法之基于内容的推荐系统算法

    港真,自己一直非常希望做算法工程师,所以自己现在开始对现在常用的大数据算法进行不断地学习,今天了解到的算法,就是我们生活中无处不在的推荐系统算法. 其实,向别人推荐商品是一个很常见的现象,比如我用了一 ...

  8. Bean 的生命周期 之 后处理Bean

    这里先把Bean 的生命周期总结一下,然后引出后处理Bean 首先,Bean 的生命周期总共有11步: 1.instantiate bean对象实例化 2.populate properties 封装 ...

  9. ios播放音乐

    1.背景音乐播放    循环播放长音乐  支持mp3格式 #import <AVFoundation/AVFoundation.h>: NSString *musicFilePath = ...

  10. android四大组件学习总结以及各个组件示例(2)

    上篇博文讲解了activity.content provider,此篇博文来仔细总结service.broadcast receiver: 3. Service >什么是服务?>windo ...