BZOJ2554 color 【概率DP】【期望DP】
题目分析:
好题。
一开始看错题了,以为是随机选两个球,编号在前的染编号在后的。
但这样仍然能获得一些启发,不难想到可以确定一个颜色,剩下的颜色是什么就无关了。
那么答案就是每种颜色的概率乘以期望。概率很好求。
考虑期望,这里存在一个"黑洞",也就是f[0]状态无论如何也不可能填满颜色,所以我们要舍弃这个状态,这样往左和往右的转移就不是对半了。
通过求出的概率作比可以发现实际上是i-1:i+1。所以可以列出DP方程
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ;
char str[maxn];
double h[maxn],f[maxn],g[maxn]; // f->expectation g->possibility int cnt[maxn];
double k[maxn],b[maxn]; void work(){
int ls = strlen(str);
for(int i=;i<=ls;i++) g[i] = (double)i/(double)ls;
for(int i=;i<ls;i++){
h[i] = (double)ls*(ls-)/(double)(*i*(ls-i));
}
k[] = ; b[] = h[];
for(int i=;i<ls;i++){
b[i] = h[i]; k[i] = (double)(i+)/(*i);
double hh = k[i-]*((double)(i-)/(*i));
b[i] += b[i-]*((double)(i-)/(*i));
k[i] /= (-hh); b[i] /= (-hh);
}
for(int i=ls-;i>=;i--){
f[i] = f[i+]*k[i]+b[i];
}
for(int i=;i<ls;i++) cnt[str[i]-'A']++;
double ans = ;
for(int i=;i<;i++) ans += f[cnt[i]]*g[cnt[i]];
printf("%.1lf\n",ans);
} int main(){
scanf("%s",str);
work();
return ;
}
BZOJ2554 color 【概率DP】【期望DP】的更多相关文章
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 概率和期望dp
概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333 概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...
- 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
- 概率与期望dp相关
概率与期望dp 概率 某个事件A发生的可能性的大小,称之为事件A的概率,记作P(A). 假设某事的所有可能结果有n种,每种结果都是等概率,事件A涵盖其中的m种,那么P(A)=m/n. 例如投掷一枚骰子 ...
- 【算法学习笔记】概率与期望DP
本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...
- [CF697D]Puzzles 树形dp/期望dp
Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...
- 概率dp+期望dp 题目列表(一)
表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好 ...
- hdu4405Aeroplane chess(概率与期望dp)
Aeroplane chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- 概率及期望DP小结
资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空 ...
- BZOJ 3566 [SHOI2014]概率充电器 ——期望DP
期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...
随机推荐
- 实现可调整宽高的DIV(左右拖动和上下拖动)
前言 本例是在React中实现,不过改一改通过原生js也很好实现,另外兼容性也做到了IE9.(IE8讲道理也是可以的). 首先看一下需要实现的需求: 要拖动图中的白色横条调整绿色和蓝色区域的高度,要拖 ...
- python 打包下载 zipfile & tarfile
看百度网盘我们会发现这么一个需求,新建一个文件夹,然后向文件夹中上传文件,点击文件夹可以直接下载,下载的是一个压缩文件,将文件夹中所有文件全部打包了下载下来. 在python中,我们要做文件打包下载, ...
- Karen and Coffee CodeForces - 816B (差分数组+预处理前缀和)
To stay woke and attentive during classes, Karen needs some coffee! Karen, a coffee aficionado, want ...
- Tea Party CodeForces - 808C (构造+贪心)
Polycarp invited all his friends to the tea party to celebrate the holiday. He has ncups, one for ea ...
- c语言之字符输入输出和输入验证
单字符I/O:getchar()和putchar() #include<stdio.h> int main(void) { char ch; while ((ch = getchar()) ...
- 怎么去掉Xcode工程中的某种类型的警告 Implicit conversion loses integer precision: 'NSInteger' (aka 'long') to 'int32
unsigned long numComponents = CGColorGetNumberOfComponents([[UIColor blackColor] CGColor]); 2014年12月 ...
- iOS--LaunchImage启动页设置及问题解决
在Assets.xcassets中使用LaunchImage来设置启动图: 一.根据不同屏幕尺寸的需求设置不同的图片,可以参照下图: 1.点击Image.xcassets 进入图片管理,然后右击, ...
- [2017BUAA软工助教]常见问题Q&A
软工常见问题Q&A 目录: 1. 转会相关 1.1 转会流程是什么样子的? 1.2 团队中多人要求转会怎么办?(如何解散团队) 1.3 为什么有人想要转会? 1.4 软件工程课为什么有这一环节 ...
- 多线程系列之六:Producer-Consumer模式
一,Producer-Consumer模式 Producer:生产者的意思,指的是生成数据的线程.Consumer:消费者的意思,指的是使用数据的线程当生产者和消费者以不同的线程运行时,两者之间的处理 ...
- Python中Celery 的基本用法以及Django 结合 Celery 的使用和实时监控进程
celery是什么 1 celery是一个简单,灵活且可靠的,处理大量消息的分布式系统 2 专注于实时处理的异步任务队列 3 同时也支持任务调度 执行流程 Celery 基本使用 tasks.py i ...