题目分析:

好题。

一开始看错题了,以为是随机选两个球,编号在前的染编号在后的。

但这样仍然能获得一些启发,不难想到可以确定一个颜色,剩下的颜色是什么就无关了。

那么答案就是每种颜色的概率乘以期望。概率很好求。

考虑期望,这里存在一个"黑洞",也就是f[0]状态无论如何也不可能填满颜色,所以我们要舍弃这个状态,这样往左和往右的转移就不是对半了。

通过求出的概率作比可以发现实际上是i-1:i+1。所以可以列出DP方程

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ;
char str[maxn];
double h[maxn],f[maxn],g[maxn]; // f->expectation g->possibility int cnt[maxn];
double k[maxn],b[maxn]; void work(){
int ls = strlen(str);
for(int i=;i<=ls;i++) g[i] = (double)i/(double)ls;
for(int i=;i<ls;i++){
h[i] = (double)ls*(ls-)/(double)(*i*(ls-i));
}
k[] = ; b[] = h[];
for(int i=;i<ls;i++){
b[i] = h[i]; k[i] = (double)(i+)/(*i);
double hh = k[i-]*((double)(i-)/(*i));
b[i] += b[i-]*((double)(i-)/(*i));
k[i] /= (-hh); b[i] /= (-hh);
}
for(int i=ls-;i>=;i--){
f[i] = f[i+]*k[i]+b[i];
}
for(int i=;i<ls;i++) cnt[str[i]-'A']++;
double ans = ;
for(int i=;i<;i++) ans += f[cnt[i]]*g[cnt[i]];
printf("%.1lf\n",ans);
} int main(){
scanf("%s",str);
work();
return ;
}

BZOJ2554 color 【概率DP】【期望DP】的更多相关文章

  1. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  2. 概率和期望dp

    概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333   概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...

  3. 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP

    [题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...

  4. 概率与期望dp相关

    概率与期望dp 概率 某个事件A发生的可能性的大小,称之为事件A的概率,记作P(A). 假设某事的所有可能结果有n种,每种结果都是等概率,事件A涵盖其中的m种,那么P(A)=m/n. 例如投掷一枚骰子 ...

  5. 【算法学习笔记】概率与期望DP

    本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中 ...

  6. [CF697D]Puzzles 树形dp/期望dp

    Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...

  7. 概率dp+期望dp 题目列表(一)

    表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好 ...

  8. hdu4405Aeroplane chess(概率与期望dp)

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  9. 概率及期望DP小结

    资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空 ...

  10. BZOJ 3566 [SHOI2014]概率充电器 ——期望DP

    期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...

随机推荐

  1. Item 21: 比起直接使用new优先使用std::make_unique和std::make_shared

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 让我们先从std::make_unique和std::make_s ...

  2. 助力ASP.NET Core 2.1开发!Layx 企业级弹窗插件发布!

    我们在开发B/S架构企业管理系统时经常用到弹窗.目前市场上主要有两大弹窗:layer/artdialog,这两款做的都非常的棒.由于我们ERP系统比较复杂.需要能够拥有和Windows弹窗一样的弹窗组 ...

  3. vue 二三倍图适配,1像素边框

    //文件名为mixin.scss// 2,3倍图适配 @mixin bg-image($url){ background-image: url("~imgs/icon/" + $u ...

  4. xadmin的使用

    01-下载源码 GitHub地址:https://github.com/sshwsfc/xadmin # 安装xadmin 由于使用的是Django2.0的版本,所以需要安装xadmin项目djang ...

  5. hdu1201,hdu6252差分约束系统

    差分约束系统一般用来解决a-b>=c的问题,有n个这样的限制条件,求出某个满足这些条件的解 可以将这个问题转化成最长路问题,即b到a的距离最少为c,而有多条b到a的路的话,我们就取最长的b到a的 ...

  6. jconsole & jvisualvm远程监视websphere服务器JVM的配置案

    jconsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请.释放等动作,将内存管理的所有信息进行统计.分析.可视化.我们可以根据这些信息判断程序是否有内存泄漏问题. 使用jco ...

  7. Python_内置函数之zip

    zip函数用于将可迭代的对象作为参数,将对象中的元素打包成一个个元祖,然后返回这些元祖组成的列表.如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同. l1 = [1, 2, 3] l2 ...

  8. Python之字符串格式化

    1)     占位符%s: %s是通用的占位符,所有类型不管是string还是int还是float全都代表. 如果使用%d,则只能代表整数:如果是%f,则只能代表小数: 2)     直接用加号+连接 ...

  9. 09-babel

    这个是解析我们es6的代码的,为什么要用它呢,因为对于一些ie浏览器,甚至FF浏览器,低版本的还不能识别我们的es6代码,那么vue里面好多还让我们去写es6的代码,这个时候我们就可以用babel这个 ...

  10. ssh登录

    ssh 用户名@IP地址 -p 端口号 ssh root@127.0.0.1 -p 2222