bzoj4025 二分图 [分治,并查集]
思路
是二分图的充要条件:图没有奇环。
考虑按时间分治,用可撤销并查集维护点到根的距离。
仍然可以用一个小trick把两点连边变成根连边,可以看这里。
每次连边时若不连通则连上,否则判一下有没有奇环。如果有输出“No”,否则不用连。
我tm把T写成m狂WA不止
#include<bits/stdc++.h>
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define sz 202020
typedef long long ll;
template<typename T>
inline void read(T& t)
{
t=0;char f=0,ch=getchar();
double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.')
{
ch=getchar();
while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();
}
t=(f?-t:t);
}
template<typename T,typename... Args>
inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.txt","r",stdin);
#endif
}
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n,m,T;
struct hh{int f,t;hh(int ff=0,int tt=0){f=ff,t=tt;}}edge[sz];
int fa[sz],dep[sz],f[sz];
int getfa(int x){return x==fa[x]?x:getfa(fa[x]);}
int getdis(int x){return x==fa[x]?0:f[x]^getdis(fa[x]);}
vector<hh>v[sz<<2];
#define ls k<<1
#define rs k<<1|1
#define lson ls,l,mid
#define rson rs,mid+1,r
void insert(int k,int l,int r,int x,int y,hh e)
{
if (x>y) return;
if (x<=l&&r<=y) return (void)v[k].push_back(e);
int mid=(l+r)>>1;
if (x<=mid) insert(lson,x,y,e);
if (y>mid) insert(rson,x,y,e);
}
struct hhh{int x,y;bool s;};
void resume(stack<hhh>S){while (!S.empty()) f[fa[S.top().x]=S.top().x]=0,dep[S.top().y]-=S.top().s,S.pop();}
void solve(int k,int l,int r)
{
stack<hhh>S;
rep(i,0,(int)v[k].size()-1)
{
hh e=v[k][i];int x=e.f,y=e.t;
int fx=getfa(x),fy=getfa(y);
int w=getdis(x)^getdis(y)^1;
if (fx==fy&&w) { rep(i,l,r) puts("No"); resume(S); return; }
if (fx!=fy)
{
if (dep[fx]>dep[fy]) swap(fx,fy),swap(x,y);
hhh cur=(hhh){fx,fy,0};
fa[fx]=fy;f[fx]=w;
if (dep[fx]==dep[fy]) ++dep[fy],cur.s=1;
S.push(cur);
}
}
if (l==r) return puts("Yes"),resume(S);
int mid=(l+r)>>1;
solve(lson);solve(rson);
resume(S);
}
int main()
{
file();
read(n,m,T);
rep(i,1,n) fa[i]=i;
int x,y,l,r;
rep(i,1,m) read(x,y,l,r),edge[i]=hh(x,y),++l,insert(1,1,n,l,r,edge[i]);
solve(1,1,T); // orz
return 0;
}
bzoj4025 二分图 [分治,并查集]的更多相关文章
- BZOJ4025 二分图 分治 并查集 二分图 带权并查集按秩合并
原文链接http://www.cnblogs.com/zhouzhendong/p/8683831.html 题目传送门 - BZOJ4025 题意 有$n$个点,有$m$条边.有$T$个时间段.其中 ...
- bzoj 4025 二分图 分治+并查集/LCT
bzoj 4025 二分图 [题目大意] 有n个点m条边,边会在start时刻出现在end时刻消失,求对于每一段时间,该图是不是一个二分图. 判断二分图的一个简单的方法:是否存在奇环 若存在奇环,就不 ...
- 2018.09.30 bzoj4025: 二分图(线段树分治+并查集)
传送门 线段树分治好题. 这道题实际上有很多不同的做法: cdq分治. lct. - 而我学习了dzyo的线段树分治+并查集写法. 所谓线段树分治就是先把操作分成lognlognlogn个连续不相交的 ...
- hdu_5354_Bipartite Graph(cdq分治+并查集判二分图)
题目链接:hdu_5354_Bipartite Graph 题意: 给你一个由无向边连接的图,问对于每一个点来说,如果删除这个点,剩下的点能不能构成一个二分图. 题解: 如果每次排除一个点然后去DFS ...
- BZOJ_4025_二分图_线段树按时间分治+并查集
BZOJ_4025_二分图_线段树按时间分治+并查集 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简 ...
- 【CF576E】Painting Edges 线段树按时间分治+并查集
[CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...
- HDU 3081 Marriage Match II (二分图,并查集)
HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...
- noip 2010 关押罪犯 二分答案+二分图染色 || 并查集
题目链接 题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值&q ...
- HDU-3081-Marriage Match II 二分图匹配+并查集 OR 二分+最大流
二分+最大流: 1 //题目大意:有编号为1~n的女生和1~n的男生配对 2 // 3 //首先输入m组,a,b表示编号为a的女生没有和编号为b的男生吵过架 4 // 5 //然后输入f组,c,d表示 ...
- BZOJ4025 二分图(线段树分治+并查集)
之前学了一下线段树分治,这还是第一次写.思想其实挺好理解,即离线后把一个操作影响到的时间段拆成线段树上的区间,并标记永久化.之后一块处理,对于某个节点表示的时间段,影响到他的就是该节点一直到线段树根的 ...
随机推荐
- adb.exe已停止工作
提示adb.exe错误,我电脑上没有安装豌豆荚,也没运行其它应用,最后发现是360杀毒软件导致的,进程中关掉360Mobile即可.
- position:fixed 失效
如果position:fixed 失效,那应该是你设置position的元素的父元素中有设置了transform属性哦 . 把 transform删除或设置为none就可以解决啦. 但是如果trans ...
- luogu 2051 中国象棋
非常好的dp,锻炼思维 f[i][j][k] 前i行有j列放1,k列放2 #include<bits/stdc++.h> #define int long long #define rep ...
- 小程序开发 从简单的 crud 开始
关键字:“小程序 API” [WXML 完成布局] <view> == <div> {{}} == <%= %> ejs | jsp2 <block wx: ...
- spring cloud(学习笔记)微服务启动错误(1)
今天下午在启动spring cloud微服务的时候,报了这个错误: Error starting ApplicationContext. To display the auto-configurati ...
- xenserver 上传centos6.8镜像
1.宿主机操作: # mkdir /iso # xe sr-create name-label=system-iso type=iso device-config:location=/iso de ...
- linux 开发板上的调试
1.需要命令 ulimit 进行设置core file size , 看 core file size. cat /proc/pid/limits, 这个暂时不用 2.需要有gdb命令 , 需要g ...
- day 3 - 2 数据类型练习
1.有变量 name = " aleX leNB " 完成如下操作 name = " aleX leNB " # 1) 移除两端空格n1 = name.stri ...
- Fragment回退栈&commit()和commitAllowingStateLoss()
Activity切换时是通过栈的形式,不断压栈出栈,在Fragment的时候,如果你不是手动开启回退栈,它是直接销毁再重建,但如果将Fragment任务添加到回退栈,情况就会不一样了,它就有了类似Ac ...
- 20165234 《Java程序设计》第八周学习总结
第八周学习总结 教材内容学习 第十二章 Java 多线程机制 进程与线程 进程是程序的一次动态执行过程,对应了从代码加载.执行至执行完毕的一个完整过程. 线程不是进程,是比进程更小的执行单位. 一个进 ...