Codeforces Round #453 (Div. 1) D. Weighting a Tree(构造)
题意
一个 \(n\) 个点 \(m\) 条边的无向连通图中每个点都有一个权值,现在要求给每条边定一个权值,满足每个点的权值等于所有相连的边权之和,权值可负。
题解
如果图是一棵树,那么方案就是唯一的,直接判一下就可以了,因为可以从叶子开始逐个确定回去。
否则先搞一棵 \(Dfs\) 树,先不管其他边,跑一遍,这时根节点可能还不满足条件(权值不为 \(0\) )。
这时考虑其他的边,一条非树边(返祖边)由于会形成一个环:
如果是偶环,无论这条边权值如何变,都不会对根节点产生贡献;
如果是奇环,当这条边权值改变 \(w\) 的时候,根据上面那个节点的奇偶性会对根产生 \(\pm 2w\) 的贡献。
此时如果根节点需要的权值是奇数如何变化都是无法满足的,当为偶数的时候可以构造出一组合法方案。
总结
树上构造,常常从叶子往回考虑。
图上构造,可以先构造树,然后考虑非树边的贡献就行了。
代码
很好写qwq 但要注意开 long long 。
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#define Travel(i, u, v) for (int i = Head[u], v = to[i]; i; v = to[i = Next[i]])
using namespace std;
typedef long long ll;
template<typename T> inline bool chkmin(T &a, T b) {return b < a ? a = b, 1 : 0;}
template<typename T> inline bool chkmax(T &a, T b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
}
void File() {
#ifdef zjp_shadow
freopen ("D.in", "r", stdin);
freopen ("D.out", "w", stdout);
#endif
}
const int N = 1e5 + 1e3, M = N << 1;
int n, m, need[N];
int Head[N], Next[M], to[M], e = 1;
inline void add_edge(int u, int v) {
to[++ e] = v; Next[e] = Head[u]; Head[u] = e;
}
bitset<N> vis;
int dep[N], from[N], cid, cu, cv;
ll val[N];
void Dfs(int u, int fa) {
ll cur = need[u];
dep[u] = dep[fa] ^ 1; vis[u] = true;
Travel(i, u, v)
if (!vis[v])
from[v] = i ^ 1, Dfs(v, u), cur -= val[i >> 1];
else if (!(dep[u] ^ dep[v]))
cid = i >> 1, cu = u, cv = v;
val[from[u] >> 1] = cur;
}
inline void Change(int u, int End, int w) {
for (; u != End; u = to[from[u]])
val[from[u] >> 1] += w, w *= -1;
}
inline void Out(bool flag) {
if (!flag) return (void)puts("NO");
puts("YES");
For (i, 1, m)
printf ("%lld\n", val[i]);
}
int main () {
File();
n = read(); m = read();
For (i, 1, n)
need[i] = read();
For (i, 1, m) {
int u = read(), v = read();
add_edge(u, v); add_edge(v, u);
}
Dfs(1, 0);
ll w = val[0];
if (!w) return Out(true), 0;
if ((w & 1) || !cid) return Out(false), 0;
int opt = dep[cu] ? 1 : -1;
Change(cu, 1, - opt * w);
Change(cv, cu, - opt * w >> 1);
val[cid] = opt * w >> 1;
Out(true);
return 0;
}
Codeforces Round #453 (Div. 1) D. Weighting a Tree(构造)的更多相关文章
- 【做题】Codeforces Round #453 (Div. 1) D. Weighting a Tree——拆环
前言:结论题似乎是我的硬伤…… 题意是给你一个无向图,已知连接到每一个点的边的权值和(为整数,且属于区间[-n,n]),需要求出每条边权值的一个合法解(都要是在区间[-2*n^2,2*n^2]内的整数 ...
- Codeforces Round #319 (Div. 1) B. Invariance of Tree 构造
B. Invariance of Tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/576/ ...
- Codeforces Round #453 (Div. 1)
Codeforces Round #453 (Div. 1) A. Hashing Trees 题目描述:给出一棵树的高度和每一层的节点数,问是否有两棵树都满足这个条件,若有,则输出这两棵树,否则输出 ...
- Codeforces Round #275 (Div. 2) C - Diverse Permutation (构造)
题目链接:Codeforces Round #275 (Div. 2) C - Diverse Permutation 题意:一串排列1~n.求一个序列当中相邻两项差的绝对值的个数(指绝对值不同的个数 ...
- Codeforces Round #453 (Div. 1) 901C C. Bipartite Segments
题 http://codeforces.com/contest/901/problem/C codeforces 901C 解 首先因为图中没有偶数长度的环,所以: 1.图中的环长度全是奇数,也就是说 ...
- Codeforces Round #453 ( Div. 2) Editorial ABCD
A. Visiting a Friend time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #453 Div. 2 A B C D (暂时)
// 从大作业和实验报告中爬出来水一发 // 补题...还是得排在写完实验报告之后... A. Visiting a Friend 题意 给定若干段行车区间,问能否从起点到终点 思路 扫描一遍,维护最 ...
- 【Codeforces Round #453 (Div. 2) A】 Visiting a Friend
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 维护最右端的端点就好. [代码] #include <bits/stdc++.h> using namespace st ...
- 【Codeforces Round #453 (Div. 2) B】Coloring a Tree
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 从根节点开始. 显然它是什么颜色.就要改成对应的颜色.(如果上面已经有某个点传了值就不用改 然后往下传值. [代码] #includ ...
随机推荐
- 用python实现一个回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...
- Maven指定编译级别
maven默认的编译水平是1.5 单个项目单独设置 如果需要在某个项目中指定编译级别,可以在项目的pom.xml文件中配置,如下: <build> <plugins> < ...
- 使用log4j记录日志
目录 log4j的优点 导入log4j的jar包 log4j的错误级别 log4j日志的输出目的地 log4j的配置示例 log4j的全局配置讲解 控制台日志的配置讲解 日志输出文件的配置讲解 使用l ...
- Java Core - Class文件结构之魔数、版本号、常量池
下图是一个.java文件被编译器编译后产生的二进制的class文件的内容:由图可知,class文件是用两位16进制数来表示的一个字节. 1个字节就是1Byte,1Byte=8bit. 一.魔数(CAF ...
- Mysql占用CPU过高如何优化?(转)
原文:http://bbs.landingbj.com/t-0-241441-1.html MySQL处在高负载环境下,磁盘IO读写过多,肯定会占用很多资源,必然CP会U占用过高. 占用CPU过高,可 ...
- 什么是arp协议?
转自:https://blog.csdn.net/tigerjibo/article/details/7351992 ARP (Address Resolution Protocol) 是个地址解析协 ...
- C# List用法 List介绍
一.#List泛型集合 集合是OOP中的一个重要概念,C#中对集合的全面支持更是该语言的精华之一. 为什么要用泛型集合? 在C# 2.0之前,主要可以通过两种方式实现集合: a.使用ArrayList ...
- C#的类型推断发展史
前言:随着C#的版本升级,C#编译器的类型推断功能也在不断的升级以适应语言进化过程中的变化,并为这个过程做了相应的优化. 隐式类型的数组 在C#1和C#2中,作为变量声明和初始化的一部分,初始化数组的 ...
- CIFS 与 SMB 有什么区别?
CIFS 与 SMB 有什么区别? https://www.getnas.com/2018/11/30/cifs-vs-smb/ 网络协议 一知半解 学习一下挺好的.. 记得 win2019 已经废弃 ...
- 将form数据转换成json对象自定义插件实现思路