题意

一个 \(n\) 个点 \(m\) 条边的无向连通图中每个点都有一个权值,现在要求给每条边定一个权值,满足每个点的权值等于所有相连的边权之和,权值可负。

题解

如果图是一棵树,那么方案就是唯一的,直接判一下就可以了,因为可以从叶子开始逐个确定回去。

否则先搞一棵 \(Dfs\) 树,先不管其他边,跑一遍,这时根节点可能还不满足条件(权值不为 \(0\) )。

这时考虑其他的边,一条非树边(返祖边)由于会形成一个环:

  • 如果是偶环,无论这条边权值如何变,都不会对根节点产生贡献;

  • 如果是奇环,当这条边权值改变 \(w\) 的时候,根据上面那个节点的奇偶性会对根产生 \(\pm 2w\) 的贡献。

    此时如果根节点需要的权值是奇数如何变化都是无法满足的,当为偶数的时候可以构造出一组合法方案。

总结

树上构造,常常从叶子往回考虑。

图上构造,可以先构造树,然后考虑非树边的贡献就行了。

代码

很好写qwq 但要注意开 long long

#include <bits/stdc++.h>

#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
#define Travel(i, u, v) for (int i = Head[u], v = to[i]; i; v = to[i = Next[i]]) using namespace std; typedef long long ll; template<typename T> inline bool chkmin(T &a, T b) {return b < a ? a = b, 1 : 0;}
template<typename T> inline bool chkmax(T &a, T b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("D.in", "r", stdin);
freopen ("D.out", "w", stdout);
#endif
} const int N = 1e5 + 1e3, M = N << 1; int n, m, need[N]; int Head[N], Next[M], to[M], e = 1; inline void add_edge(int u, int v) {
to[++ e] = v; Next[e] = Head[u]; Head[u] = e;
} bitset<N> vis;
int dep[N], from[N], cid, cu, cv; ll val[N]; void Dfs(int u, int fa) {
ll cur = need[u];
dep[u] = dep[fa] ^ 1; vis[u] = true;
Travel(i, u, v)
if (!vis[v])
from[v] = i ^ 1, Dfs(v, u), cur -= val[i >> 1];
else if (!(dep[u] ^ dep[v]))
cid = i >> 1, cu = u, cv = v;
val[from[u] >> 1] = cur;
} inline void Change(int u, int End, int w) {
for (; u != End; u = to[from[u]])
val[from[u] >> 1] += w, w *= -1;
} inline void Out(bool flag) {
if (!flag) return (void)puts("NO");
puts("YES");
For (i, 1, m)
printf ("%lld\n", val[i]);
} int main () { File(); n = read(); m = read();
For (i, 1, n)
need[i] = read();
For (i, 1, m) {
int u = read(), v = read();
add_edge(u, v); add_edge(v, u);
} Dfs(1, 0);
ll w = val[0];
if (!w) return Out(true), 0;
if ((w & 1) || !cid) return Out(false), 0; int opt = dep[cu] ? 1 : -1;
Change(cu, 1, - opt * w);
Change(cv, cu, - opt * w >> 1);
val[cid] = opt * w >> 1; Out(true); return 0; }

Codeforces Round #453 (Div. 1) D. Weighting a Tree(构造)的更多相关文章

  1. 【做题】Codeforces Round #453 (Div. 1) D. Weighting a Tree——拆环

    前言:结论题似乎是我的硬伤…… 题意是给你一个无向图,已知连接到每一个点的边的权值和(为整数,且属于区间[-n,n]),需要求出每条边权值的一个合法解(都要是在区间[-2*n^2,2*n^2]内的整数 ...

  2. Codeforces Round #319 (Div. 1) B. Invariance of Tree 构造

    B. Invariance of Tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/576/ ...

  3. Codeforces Round #453 (Div. 1)

    Codeforces Round #453 (Div. 1) A. Hashing Trees 题目描述:给出一棵树的高度和每一层的节点数,问是否有两棵树都满足这个条件,若有,则输出这两棵树,否则输出 ...

  4. Codeforces Round #275 (Div. 2) C - Diverse Permutation (构造)

    题目链接:Codeforces Round #275 (Div. 2) C - Diverse Permutation 题意:一串排列1~n.求一个序列当中相邻两项差的绝对值的个数(指绝对值不同的个数 ...

  5. Codeforces Round #453 (Div. 1) 901C C. Bipartite Segments

    题 http://codeforces.com/contest/901/problem/C codeforces 901C 解 首先因为图中没有偶数长度的环,所以: 1.图中的环长度全是奇数,也就是说 ...

  6. Codeforces Round #453 ( Div. 2) Editorial ABCD

    A. Visiting a Friend time limit per test 1 second memory limit per test 256 megabytes input standard ...

  7. Codeforces Round #453 Div. 2 A B C D (暂时)

    // 从大作业和实验报告中爬出来水一发 // 补题...还是得排在写完实验报告之后... A. Visiting a Friend 题意 给定若干段行车区间,问能否从起点到终点 思路 扫描一遍,维护最 ...

  8. 【Codeforces Round #453 (Div. 2) A】 Visiting a Friend

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 维护最右端的端点就好. [代码] #include <bits/stdc++.h> using namespace st ...

  9. 【Codeforces Round #453 (Div. 2) B】Coloring a Tree

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 从根节点开始. 显然它是什么颜色.就要改成对应的颜色.(如果上面已经有某个点传了值就不用改 然后往下传值. [代码] #includ ...

随机推荐

  1. session与cookie的区别以及HTML5中WebStorage理解

    一.session与cookie的区别 二.HTML5中WebStorage理解 WebStorage的目的是克服由cookie所带来的一些限制,当数据需要被严格控制在客户端时,不需要持续的将数据发回 ...

  2. Python_函数的有用信息、带参数的装饰器、多个装饰器装饰一个函数

    函数的有用信息 代码1: def login(username, password): """ 此函数需要用户名,密码两个参数,完成的是登录的功能. :return: T ...

  3. awk+sed编程

  4. apply和call方法

    真伪数组转换 /* apply和call方法的作用: 专门用于修改方法内部的this 格式: call(对象, 参数1, 参数2, ...); apply(对象, [数组]); */ function ...

  5. Vue+iview实现添加删除类

    <style> .tab-warp{ border-bottom: solid 1px #e0e0e0; overflow: hidden; margin-top: 30px; posit ...

  6. WSL Windows subsytem linux 的简单学习与使用

    1. win10 1709 以上的版本应该都增加上了 ctrl +r 运行 winver 查看版本 2. 添加删除程序 增加 wsl 增加一个功能 3. 打开cmd 输入 bash 即可 4. 可以将 ...

  7. eclipse打开package explorer视图

    第一步:window-show view-other 第二步:

  8. C# Note33: 总结C# 6.0/7.0 新特性

    先注明,本文主体参考自:C# 6.0新特性 目前代码中使用了很多C#6.0的新特性,下面以Point类来做相关叙述: public class Point { public int X { get; ...

  9. 在linux命令下访问url

    1.elinks - lynx-like替代角色模式WWW的浏览器 例如: elinks --dump http://www.baidu.com 2.wget 这个会将访问的首页下载到本地 [root ...

  10. linux操作命令 开发人员需要掌握的一些命令

    1.man 查看帮助 2.命令 --help 简单帮助 3.help cd 查看一些Linux 命令行的一些内置命令 4.cp  粘贴复制命令  eg:cp yum.log /root/ 5.find ...