题目链接

题意:有编号为\(1\cdots N\)的N件玩具,第 i 件玩具经过压缩后变成一维长度为 \(C_i\)​ 。要求在一个容器中的玩具编号是连续的,同时如果将第 i 件玩具到第 j 个玩具放到一个容器中,那么容器的长度将为 \(x=j-i+\sum\limits_{k=i}^{j}C_k\)。​如果容器长度为 x ,其制作费用为 \((X-L)^2\) .其中 L 是一个常量。容器数目长度不限。求最小费用。

\(1 \le N \le 50000,1 \le L,Ci \le 10^7\)

这道题是斜率优化的经典题了qvq

当然dp顺序肯定是从前到后了

分析一下答案式

用f(j)来更新f(i)

\[X - L = i-(j + 1)+\sum\limits_{k=j + 1}^{i}C_k - L= sum[i] + i - sum[j] - j - L - 1
\]

设\(a[i] = sum[i] + i, b[i] = sum[i] + i + 1 + L\)

\[f[i] = f[j] + (X - L)^2 = f(j) + (a[i] - b[j]) ^ 2
\]

这里面 随j改变的量是\(b[j], b[j]^2\)和\(f[j]\)

所以移项得 \(2⋅a[i]⋅b[j]+f[i]−a[i]^2=f[j]+b[j]^2\)

将b[j]看作x,\(f[j]+b[j]^2\)看作y,这个式子就可以看作一条斜率为\(2a[i]\)的直线

f[i]即当上述直线过点\(P(b[j],f[j]+b[j]^2)\)时,直线在y轴的截距加\(a[i]^2\)

而题目即为找这个截距的最小值

由于sum[i]随i递增 所以a[i],b[i]都递增

所以点\(1 \cdots i-1\)是从左到右排列的

用单调栈维护一下凸包

像做线性规划一样做一个切线就行了

也就是二分斜率\((P_j,P_{j+1}​) < 2a[i]\)

update:貌似不用二分

因为a[i]递增要查询的斜率也递增

那单调队列维护就行了qvq

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1e5 + 5;
const int K = 2e5;
int n, L;
double sum[N], f[N];
int que[N], head, tail;
inline double a(int x){return sum[x]+x;}
inline double b(int x){return sum[x]+x+1+L;}
inline double X(int x){return b(x);}
inline double Y(int x){return f[x]+b(x)*b(x);}//注意这里不可以用define qvq
//a[i] = sum[i] + i, b[i] = sum[i] + i + 1 + L
//P(b[j],f[j]+b[j]^2)
inline double slope(int x, int y){
return (Y(y) - Y(x)) / (X(y) - X(x));
}
int main() {
scanf("%d%d", &n, &L);
for(int i = 1; i <= n; ++i){
scanf("%lf", &sum[i]);
sum[i] += sum[i - 1];
}
head = tail = 1;
for(int i = 1; i <= n; ++i){
while(head < tail && slope(que[head], que[head + 1]) < 2 * a(i)) ++head;
f[i] = f[que[head]] + (a(i) - b(que[head])) * (a(i) - b(que[head]));
//printf("b %lld\n", (long long)(a(i) - b(que[head])));
while(head < tail && slope(que[tail - 1], que[tail]) > slope(que[tail - 1], i)) --tail;
que[++tail] = i;
}
printf("%lld", (long long)f[n]);
return 0;
}

[HNOI2008]玩具装箱TOY(斜率优化)的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  2. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  3. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

  4. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  5. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  7. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  8. 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化

    Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...

  9. bzoj1010: [HNOI2008]玩具装箱toy——斜率优化

    方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...

  10. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

随机推荐

  1. Python入门-函数

    定义:将一组语句的集合通过一个名字(函数名)封装起来,要先执行这个函数,只需要调用其函数名即可.特性:1.减少重复代码2.使程序变的可扩展3.使程序变的易维护 函数参数:形参和实参形参:位置参数,关键 ...

  2. 设计模式原则——依赖倒转&里氏代换原则

    设计模式一共有六大原则: 单一原则.开放封闭原则.接口分离原则.里氏替换原则.最少知识原则.依赖倒置原则. 这篇博客是自己对依赖倒转&里氏代换原则的一些拙见,有何不对欢迎大家指出. 依赖倒转原 ...

  3. 295B - Greg and Graph (floyd逆序处理)

    题意:给出任意两点之间的距离,然后逐个删除这些点和与点相连的边,问,在每次删除前的所有点对的最短距离之和 分析:首先想到的是floyd,但是如果从前往后处理,复杂度是(500)^4,超时,我们从后往前 ...

  4. python3 打开页面后多窗口处理三种方法

    多窗口处理三种方法 导包,实例化浏览器from selenium import webdriver fx=webdriver.Firefox()方法一fx.switch_to.window(fx.wi ...

  5. vue组件封装选项卡

    <template> <myMenu :arr='arr' :arrcontent='content'></myMenu> </template> &l ...

  6. Tomcat异常及解决办法——持续更新中

    公司项目,开发语言为java,中间件为Tomcat,运行过程中,从Tomcat出现了一些异常,现将异常及解决办法记录如下,仅供参考.(不断在补充中.......) 异常一: 1.日志内容 org.ap ...

  7. Tomcat启用GZIP压缩,提升web性能

    一.前言 最近做了个项目,遇到这么一个问题:服务器返回给客户端的json数据量太大(大概65M),在客户端加载了1分多钟才渲染完毕,费时耗流量,用户体验极其不好.后来网上搜优化的方法,就是Http压缩 ...

  8. [转帖]OS/2 兴 衰 史

    OS/2 兴 衰 史 https://zhidao.baidu.com/question/12076254.html 最近在看windows的版本 感觉自己接触电脑太晚 知道的也是很少 不明白 之前有 ...

  9. Mybatis 配置resultMap一对多关联映射

    resultMap配置: 引用: PO类: 接口: 测试: public class UserMapperTest { private SqlSessionFactory sqlSessionFact ...

  10. Android——MaterialDesign之二DrawerLayout

    滑动菜单--DrawerLayout 滑动菜单就是把一些菜单选项隐藏起来,而不是放置主屏幕中,然后可以通过滑动的方式将菜单显示出来,具有非常的画面效果,就是类似侧边滑动. 例子:需要上一次的Toolb ...