【CF1139D】Steps to One(动态规划)

题面

CF

你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望。

题解

设\(f[i]\)表示\(gcd\)为\(i\)时的答案的期望。

考虑转移就是每次选一个数和\(i\)求个\(gcd\),那么计算一下变成每个可能的值的方案数直接暴力转移就行了。

复杂度似乎是两个\(log\)???

#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define MAX 100100
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int n,f[MAX],inv[MAX],mu[MAX];
vector<int> y[MAX];
int main()
{
scanf("%d",&n);f[1]=0;mu[1]=1;inv[0]=inv[1]=1;
for(int i=2;i<=n;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;++i)for(int j=i;j<=n;j+=i)y[j].push_back(i);
for(int i=1;i<=n;++i)for(int j=i+i;j<=n;j+=i)mu[j]-=mu[i];
for(int i=1;i<=n;++i)
{
int p=n/i;
if(i!=1)f[i]=1ll*(f[i]+p)*inv[n-p]%MOD;;
add(f[0],f[i]+1);
for(int j=i+i;j<=n;j+=i)
{
int d=j/i,s=0;
for(int v:y[d])s+=mu[v]*(p/v);
add(f[j],1ll*s*(f[i]+1)%MOD);
}
}
f[0]=1ll*f[0]*inv[n]%MOD;
printf("%d\n",f[0]);
return 0;
}

【CF1139D】Steps to One(动态规划)的更多相关文章

  1. 题解-CF1139D Steps to One

    题面 CF1139D Steps to One 一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+ ...

  2. CF1139D Steps to One

    题目链接:洛谷 这个公式可真是个好东西.(哪位大佬知道它叫什么名字的?) 如果$X$恒$\geq 0$,那么 $$E[X]=\int_0^{+\infty}P(X>t)dt$$ 呸,我什么都没写 ...

  3. cf1139D. Steps to One(dp)

    题意 题目链接 从\([1, M]\)中随机选数,问使得所有数gcd=1的期望步数 Sol 一个很显然的思路是设\(f[i]\)表示当前数为\(i\),期望的操作轮数,转移的时候直接枚举gcd \(f ...

  4. CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)

    stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...

  5. CF1139D Steps to One (莫比乌斯反演 期望dp)

    \[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后 ...

  6. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  7. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  8. java 动态规划解决上楼梯问题

    问题描述: 你正在爬楼梯. 它需要n步才能达到顶峰. 每次你可以爬1或2步. 您可以通过多少不同的方式登顶? 注意:给定n将是一个正整数. Example 1: Input: 2 Output: 2 ...

  9. 动态规划-Minimum Insertion Steps to Make a String Palindrome

    2020-01-05 11:52:40 问题描述: 问题求解: 好像多次碰到类似的lcs的变种题了,都是套上了回文的壳.这里再次记录一下. 其实本质就是裸的lcs,就出结果了. public int ...

随机推荐

  1. stark组件之pop页面,按钮,url,页面

      1.Window open() 方法 2.admin的pop添加按钮 3.stark之pop功能 3.知识点总结 4.coding代码 1.Window open() 方法 效果图   2.adm ...

  2. from、where、group、with、having、order、union、limit 的使用

    顺序很重要 每次看数据库的一些语法时,都很自然的略过那一大堆的规则,比如说线下面这段select的语法: select [field1,field2...] func_namefrom table1, ...

  3. Spring.profile配合Jenkins发布War包,实现开发、测试和生产环境的按需切换

    前两篇不错 Spring.profile实现开发.测试和生产环境的配置和切换 - Strugglion - 博客园https://www.cnblogs.com/strugglion/p/709102 ...

  4. 简要了解 MySql 5.5/5.6/5.7/8 出现的新特性

    MySQL的开发周期 在比较之前,首先提一下MySQL的开发周期. MySQL一个大版本的开发,大致经历如下几个阶段: Feature Development Feature Testing Perf ...

  5. 【Python3练习题 014】 一个数如果恰好等于它的因子之和,这个数就称为“完数”。例如6=1+2+3。编程找出1000以内的所有完数。

    a.b只要数字a能被数字b整除,不论b是不是质数,都算是a的因子.比如:8的质因子是 2, 2, 2,但8的因子就包括 1,2,4. import math   for i in range(2, 1 ...

  6. Java 中的String、StringBuilder与StringBuffer的区别联系(转载)

    1 String 基础 想要了解一个类,最好的办法就是看这个类的源代码,String类源代码如下: public final class String implements java.io.Seria ...

  7. C# Note23: 如何自定义类型使用foreach循环

    前言 在foreach语句代码中,我们经常是对List,Collection,Dictionary等类型的数据进行操作,不过C#允许用户自定义自己的类型来使用foreach语句.那么自定义类型能够使用 ...

  8. Hbase表结构模型

  9. python之路--线程的其他方法

    一 . current_thread的用法 import threading import time from threading import Thread, current_thread def ...

  10. zabbix添加监控Mysql

    起因:zabbix自带的mysql监控模板直接使用会显示“不支持的”因为key的值是通过Mysql用户查看"show global status"信息或者用mysqladmin命令 ...