51Nod1626 B君的梦境 状压dp 矩阵
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1626.html
题目传送门 - 51Nod1626
题意

题解
首先考虑形象的想象本题中的思维空间。我们把整个 2*2*3*n 的四维空间看作 n 个 2*2*3 的三维空间顺次排列。考虑到 1*1*1*2 的方块,我们如果把边长 2 放在第 4 维上,相当于是填充了连续两个三维空间的对应位置。否则,边长 1 就放在了第 4 维上,相当于在一个三维空间中填充 1*1*2 的方块。
然后我们考虑状压 DP 。状态压缩当前三维空间的被填充状态。显然有 $2^{2\times 2\times 3}=4096$ 种情况。然后,我们考虑通过旋转、对称删除一些重复的状态,通过黑白染色删除一些没用的状态,最后剩下的状态数很少了。然后矩阵快速幂即可。
如果要更加具体地了解如何删除状态,参见代码或者原题的题解。
代码
#include <bits/stdc++.h>
#define Hash(a,b,c) Ha[a][b][c]
using namespace std;
typedef long long LL;
const int N=105,mod=1e9+7;
LL n;
int t=0,a[N],Min[1<<12],ID[1<<12],Ha[5][5][5];
struct Mat{
int v[N][N];
Mat(){}
Mat(int x){
memset(v,0,sizeof v);
for (int i=1;i<=t;i++)
v[i][i]=x;
}
}M(0);
Mat operator * (Mat A,Mat B){
Mat C(0);
for (int i=1;i<=t;i++)
for (int j=1;j<=t;j++)
for (int k=1;k<=t;k++)
C.v[i][j]=(1LL*A.v[i][k]*B.v[k][j]+C.v[i][j])%mod;
return C;
}
Mat Pow(Mat x,LL y){
Mat ans(1);
for (;y;y>>=1,x=x*x)
if (y&1LL)
ans=ans*x;
return ans;
}
void SwapD(int &v,int i,int j){
if (((v>>i)^(v>>j))&1)
v^=(1<<i)^(1<<j);
}
int checkWB(int s){
int ans=0;
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++)
for (int k=1;k<=3;k++)
if (s>>Hash(i,j,k)&1)
if ((i+j+k)&1)
ans++;
else
ans--;
return ans==0;
}
int calc(int s){
int res=s;
for (int t=0;t<4;t++){
int v=s;
if (t&1)
for (int j=1;j<=2;j++)
for (int k=1;k<=3;k++)
SwapD(v,Hash(1,j,k),Hash(2,j,k));
if (t>>1)
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++)
SwapD(v,Hash(i,j,1),Hash(i,j,3));
for (int d=0;d<4;d++,res=min(res,v))
for (int i=1;i<=3;i++){
SwapD(v,Hash(1,1,i),Hash(1,2,i));
SwapD(v,Hash(1,2,i),Hash(2,2,i));
SwapD(v,Hash(2,2,i),Hash(2,1,i));
}
}
return res;
}
int dx[6]={ 0, 0, 0, 0, 1,-1},_x[6];
int dy[6]={ 0, 0, 1,-1, 0, 0},_y[6];
int dz[6]={ 1,-1, 0, 0, 0, 0},_z[6];
void GetXYZ(){
int cnt=0;
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++)
for (int k=1;k<=3;k++)
if ((i+j+k)&1)
cnt++,_x[cnt]=i,_y[cnt]=j,_z[cnt]=k;
}
void GetM(int S,int v,int t){
if (t>6){
M.v[S][ID[Min[v]]]++;
return;
}
GetM(S,v,t+1);
int x=_x[t],y=_y[t],z=_z[t],xx,yy,zz;
if (v>>Hash(x,y,z)&1)
return;
for (int i=0;i<6;i++){
xx=x+dx[i],yy=y+dy[i],zz=z+dz[i];
if ((1<=xx&&xx<=2&&1<=yy&&yy<=2&&1<=zz&&zz<=3)&&(~v>>Hash(xx,yy,zz)&1))
GetM(S,v^(1<<Hash(x,y,z))^(1<<Hash(xx,yy,zz)),t+1);
}
}
int main(){
int sz=1<<12;
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++)
for (int k=1;k<=3;k++)
Ha[i][j][k]=(i-1)*6+(j-1)*3+k-1;
for (int i=0;i<sz;i++)
if (checkWB(i))
if ((Min[i]=calc(i))==i)
a[++t]=i,ID[i]=t;
GetXYZ();
for (int i=1;i<=t;i++)
GetM(i,a[i]^(sz-1),1);
scanf("%lld",&n);
M=Pow(M,n);
printf("%d",M.v[ID[Min[sz-1]]][ID[Min[sz-1]]]);
return 0;
}
51Nod1626 B君的梦境 状压dp 矩阵的更多相关文章
- HDU 5434 Peace small elephant 状压dp+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: ...
- 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...
- 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法
题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...
- BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )
状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...
- 【XSY2524】唯一神 状压DP 矩阵快速幂 FFT
题目大意 给你一个网格,每个格子有概率是\(1\)或是\(0\).告诉你每个点是\(0\)的概率,求\(1\)的连通块个数\(\bmod d=0\)的概率. 最开始所有格子的概率相等.有\(q\)次修 ...
- 2018.09.28 hdu5434 Peace small elephant(状压dp+矩阵快速幂)
传送门 看到n的范围的时候吓了一跳,然后发现可以矩阵快速幂优化. 我们用类似于状压dp的方法构造(1(1(1<<m)∗(1m)*(1m)∗(1<<m)m)m)大小的矩阵. 然后 ...
- nyoj1273 河南省第九届省赛_"宣传墙"、状压DP+矩阵幂加速
宣传墙 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 ALPHA 小镇风景美丽,道路整齐,干净,到此旅游的游客特别多.CBA 镇长准备在一条道路南 面 4*N 的墙上做 ...
- BZOJ 2004 公交线路(状压DP+矩阵快速幂)
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...
- [BZOJ4000][TJOI2015]棋盘(状压DP+矩阵快速幂)
题意极其有毒,注意给的行列都是从0开始的. 状压DP,f[i][S]表示第i行状态为S的方案数,枚举上一行的状态转移.$O(n2^{2m})$ 使用矩阵加速,先构造矩阵a[S1][S2]表示上一行为S ...
随机推荐
- Ex 2_22 两个有序列表合并后的第k小元素..._第四次作业
package org.xiu68.ch02; public class Ex2_22 { public static void main(String[] args) { // TODO Auto- ...
- jQuery实现鼠标点击div外的地方div隐藏消失的效果(转)
转:https://www.cnblogs.com/jsingleegg/p/3456152.html css部分: <style type="text/css">.p ...
- 谷歌被爆秘密研发新系统 欲5年内取代Android
谷歌2年多来有一群工程师秘密研发新系统,希望最终能取代手机操作系统安卓.安卓日前遭欧盟以反垄断为由重罚. 谷歌的新研发计划Fuchsia是从零开始,希望在更多个人装置和各式小巧装置联机上网的情况下,能 ...
- Oracle12c 从入门到精通(第二版) 闫红岩 金松河 编著
声明:本文只是用于学习笔记使用.方便查询.若需要书本,请到书店购买. 本书封面 前言 第1章 Oracle数据库概述 1.1 Oracle数据库产品结构及组成 1.1.1 标准版 1.1.2 标准版 ...
- java 实现往oracle存储过程中传递array数组类型的参数
注:本文来源于 < java 实现往oracle存储过程中传递array数组类型的参数 >最近项目中遇到通过往存储过程传递数组参数的问题, 浪费了N多个小时,终于有点头绪. 具体的代码 ...
- vue之$forceUpdate
由于一些嵌套特别深的数据,导致数据更新了.UI没有更新(连深度监听都没有监听到) this.$forceUpdate();
- ob_start用法详解
用PHP的ob_start(); 一. 相关函数简介:1.Flush:刷新缓冲区的内容,输出.函数格式:flush()说明:这个函数经常使用,效率很高.2.ob_start :打开输出缓冲区函数格式: ...
- mysql 安装问题一:由于找不到MSVCR120.dll,无法继续执行代码.重新安装程序可能会解决此问题。
这种错误是由于未安装 vcredist 引起的 下载 vcredist 地址:https://www.microsoft.com/zh-CN/download/details.aspx?id= ...
- 引用的作用&引用与指针的区别
引入 C语言中函数有两种传参的方式: 传值和传址.以传值方式, 在函数调用过程中会生成一份临时变量用形参代替, 最终把实参的值传递给新分配的临时变量即形参. 它的优点是避免了函数调用的一些副作用, 但 ...
- windows客户端走代理上网
前提:在大型网络中,由于众多服务器及安全性考虑,内网服务器是不能上外网的,但是为了满足某些服务的需要,一定会搭建代理服务器的. 以下是windows客户端走代理服务器的操作: 两下确定就可 ...