题意

题目链接

分析

sπo yyb

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline bool Max(T &a, T b){return a < b ? a = b, 1 : 0;}
template <typename T> inline bool Min(T &a, T b){return a > b ? a = b, 1 : 0;}
const int N = 2e5 + 7, mod = 998244353;
int n, m, k, pc;
LL fac[N], inv[N], invfac[N];
int phi[N], low[N], pri[N];
void sieve(int n) {
phi[1] = 1;int to;
for(int i = 2; i <= n; ++i) {
if(!low[i]) low[i] = i, phi[i] = i - 1, pri[++pc] = i;
for(int j = 1; j <= pc && (to = i * pri[j]) <= n; ++j) {
low[to] = pri[j];
if(i % pri[j] == 0) {
phi[to] = phi[i] * pri[j];
break;
}
phi[to] = phi[i] * (pri[j] - 1);
}
}
}
LL C(int n, int m) {
return fac[n] * invfac[m] % mod * invfac[n - m] % mod;
}
void add(LL &a, LL b) {
a += b;
if(a >= mod) a -= mod;
}
LL put(int a, int b) {
if(!b) return 0;
LL res = 0;
for(int i = 0; i <= a / (k + 1); ++i)
add(res, (i & 1 ? mod - 1 : 1) * C(b, i) % mod * C(a - i * (k + 1) + b - 1, b - 1) % mod);
return res;
}
LL solve(int d) {
int c = m / (n / d); LL res = 0;
if(c <= k) return C(d, c);
for(int i = 0; i <= k; ++i)
add(res, (i + 1) * put(c - i, d - c - 1) % mod);
return res;
}
int main() {
n = gi(), m = gi(), k = gi();
if(n == m)
return puts(k < m ? "0" : "1"), 0;
sieve(n);
inv[1] = fac[0] = invfac[0] = 1;
rep(i, 1, 2 * n) {
if(i ^ 1) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
fac[i] = fac[i - 1] * i % mod;
invfac[i] = invfac[i - 1] * inv[i] % mod;
}
LL ans = 0;
for(int i = 1; i <= n; ++i) if(n % i == 0 && m % (n / i) == 0)
add(ans, solve(i) * phi[n / i] % mod);
printf("%lld\n", ans * inv[n] % mod);
return 0;
}

[Luogu4916]魔力环[Burnside引理、组合计数、容斥]的更多相关文章

  1. [CTS2019]珍珠(NTT+生成函数+组合计数+容斥)

    这题72分做法挺显然的(也是我VP的分): 对于n,D<=5000的数据,可以记录f[i][j]表示到第i次随机有j个数字未匹配的方案,直接O(nD)的DP转移即可. 对于D<=300的数 ...

  2. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  3. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  4. BZOJ 3294: [Cqoi2011]放棋子 计数 + 容斥 + 组合

    比较头疼的计数题. 我们发现,放置一个棋子会使得该棋子所在的1个行和1个列都只能放同种棋子. 定义状态 $f_{i,j,k}$ 表示目前已使用了 $i$ 个行,$j$ 个列,并放置了前 $k$ 种棋子 ...

  5. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  6. BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)

    题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...

  7. SPOJ - AMR11H Array Diversity (水题排列组合或容斥)

    题意:给定一个序列,让你求两种数,一个是求一个子序列,包含最大值和最小值,再就是求一个子集包含最大值和最小值. 析:求子序列,从前往记录一下最大值和最小值的位置,然后从前往后扫一遍,每个位置求一下数目 ...

  8. 【等价的穿越】Burnside引理&Pólya计数法

    Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上 ...

  9. 数学(组合,容斥):COGS 1220. 盒子与球

    1220. 盒子与球 ★   输入文件:boxball.in   输出文件:boxball.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 现有r个互不相同的盒子和n ...

随机推荐

  1. Implemented Energy-Conserving Hair Scattering Model from Weta Digital

    I used to implement the Energy-Conserving Hair Scattering Model as the pre-calculation program, so t ...

  2. java面试整理(会持续更新..)

    本人出道至今,经历了大大小小百余场战斗,,,下面整理的面试题有些有答案,有些没答案,那个谁说过:"要抱着怀疑的态度去编程,所以,即便有答案,也不一定正确,即便我本地正确,但是由于屏幕前的你和 ...

  3. ORACLE导入大量数据的两种方式比较

    不管是开发还是测试,工作中经常需要去批量新增测试数据,但是大量数据的新增速度有时候让我们苦不堪言,下面通过两种方式完成oracle数据的批量新增,比较两种方式的效率. 第一种方式:采用工具导入sql文 ...

  4. centos开发环境安装的备忘

    #Centos        visudo运行普通用户$(whomai)执行sudo操作                http://www.cnblogs.com/xianyunhe/archive ...

  5. Android 官方Demo ActionBarCompat-Styled

    ActionBarCompat-Styled Demo下载地址:https://github.com/googlesamples/android-ActionBarCompat-Styled/#rea ...

  6. 一些安全相关的HTTP header

    1.Strict-Transport-Security HTTP Strict-Transport-Security,简称为HSTS. 作用:允许一个HTTPS网站,要求浏览器总是通过HTTPS访问它 ...

  7. BurpSuit添加CA证书拦截HTTPS通信

    问题 BurpSuit 安装成功后可以直接使用代理对使用 HTTP 协议通信的会话进行拦截,但是对于使用 HTTPS 协议通信的会话进行代理使用时就会出现如下画面 例如访问百度主页: 原因 HTTPS ...

  8. 高通 NXP NFC(PN547PN548) 移植流程 android6.0

    一.驱动部分 首先向NXP 的 fae要android 6.0 bring up的代码,如:NFC_NCIHALx_AR0F.4.3.0_M_NoSE 结构目录如下: 1. 添加驱动文件 高通平台需使 ...

  9. AI学习---回归和聚类算法

    其他 资料链接:https://pan.baidu.com/s/1ofN2QFxpzC-OtmTFE2fHfw 提取码:o4c2

  10. Javascript_06_表单验证(离开单项,输入框后提示信息)

    Javascript_06_ 表单验证(离开单项,输入框后提示信息) 说明:对于必须输入的入力框,光标离开(使用 onblur方法)时进行检查.假如有错,红色的提示信息直接在该画面的这个输入框的后面显 ...