嘟嘟嘟




这题刚开始想复杂了,想什么dp去了,其实没那么难。

考虑断掉一条边,记分离出来的两棵子树为A和B,那么合并后的树的直径可能有三种情况:

1.A的直径。

2.B的直径

3.A的半径+边权+B的半径。

半径是啥?记从点\(i\)出发到树上任意一点的最长距离为\(f[i]\),则树的半径就是\(min \{ f[i] \}\)(此题需要min,严格定义我也不知道是max还是min)。




所以我们\(O(n)\)枚举断边,\(O(n)\)求树的直径和半径即可。

直径不必说,说一下怎么求半径。

对于点\(v\),记\(v\)的父亲为\(u\), \(v\)的半径有这么几种情况:

1.\(v\)子树内的最长链。

2.\(v\)子树外,\(u\)子树内的一条链 + \(dis(u, v)\)。

3.\(u\)子树外的最长链 + \(dis(u, v)\)。

对于情况1,求树的直径的时候就维护好了。

对于情况2,我们需要维护最长连和次长链。然后如果\(v\)在\(u\)的最长链上,就是\(u\)的次长链 + \(dis(u, v)\);否则就是\(u\)的最长链 + \(dis(u, v)\)。

对于情况3,在dfs的时候维护一个fro,表示\(u\)子树外的最长链,维护fro的时候也向情况2分两种情况,分别更新即可。




答案就是所以直径的min。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e3 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int n;
struct Node
{
int x, y, w;
}t[maxn];
struct Edge
{
int nxt, to, w;
}e[maxn << 1];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], y, w};
head[x] = ecnt;
} bool col[maxn];
int dp1[maxn], dp2[maxn], dia_Max = 0;
In void dfs(int now, int _f, int c)
{
dp1[now] = 0, col[now] = c;
int Max1 = 0, Max2 = 0;
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if((v = e[i].to) == _f) continue;
dfs(v, now, c);
if(dp1[v] + e[i].w > Max1) Max2 = Max1, Max1 = dp1[v] + e[i].w;
else if(dp1[v] + e[i].w > Max2) Max2 = dp1[v] + e[i].w;
}
dp1[now] = Max1; dp2[now] = Max2;
dia_Max = max(dia_Max, Max1 + Max2);
}
int f[maxn];
In void dfs2(int now, int _f, int fro)
{
int tp = 0;
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if((v = e[i].to) == _f) continue;
if(dp1[v] + e[i].w == dp1[now])
{
f[v] = max(dp1[v], dp2[now] + e[i].w);
tp = max(dp2[now], fro);
}
else
{
f[v] = max(dp1[v], dp1[now] + e[i].w);
tp = max(dp1[now], fro);
}
f[v] = max(f[v], tp + e[i].w);
dfs2(v, now, tp + e[i].w);
}
} int main()
{
Mem(head, -1);
n = read();
for(int i = 1; i < n; ++i)
{
int x = read(), y = read(), w = read();
t[i] = (Node){x, y, w};
addEdge(x, y, w), addEdge(y, x, w);
}
int ans = INF;
for(int i = 1; i < n; ++i)
{
dia_Max = 0;
dfs(t[i].x, t[i].y, 0), dfs(t[i].y, t[i].x, 1);
f[t[i].x] = dp1[t[i].x], f[t[i].y] = dp1[t[i].y];
dfs2(t[i].x, t[i].y, 0), dfs2(t[i].y, t[i].x, 0);
int pos1 = t[i].x, pos2 = t[i].y;
for(int j = 1; j <= n; ++j)
{
if(!col[j] && f[j] < f[pos1]) pos1 = j;
if(col[j] && f[j] < f[pos2]) pos2 = j;
}
ans = min(ans, max(dia_Max, f[pos1] + f[pos2] + t[i].w));
}
write(ans), enter;
return 0;
}

[TJOI2017]城市的更多相关文章

  1. 【BZOJ4890】[TJOI2017]城市(动态规划)

    [BZOJ4890][TJOI2017]城市(动态规划) 题面 BZOJ 洛谷 题解 数据范围都这样了,显然可以暴力枚举断开哪条边. 然后求出两侧直径,暴力在直径上面找到一个点,使得其距离直径两端点的 ...

  2. [洛谷P3761] [TJOI2017]城市

    洛谷题目链接:[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速 ...

  3. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  4. bzoj4890[Tjoi2017]城市(树的半径)

    4890: [Tjoi2017]城市 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 149  Solved: 91[Submit][Status][D ...

  5. [TJOI2017]城市(树的直径)

    [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达, ...

  6. [BZOJ4890][TJOI2017]城市(DP)

    题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收 ...

  7. BZOJ4890 & 洛谷3761:[TJOI2017]城市——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4890 https://www.luogu.org/problemnew/show/P3761 从加 ...

  8. [TJOI2017]城市 【树的直径+暴力+优化】

    Online Judge:Luogu P3761 Label:树的直径,暴力 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有n座城市,n-1条高速公路,保证了 ...

  9. luogu P3761 [TJOI2017]城市 树的直径 bfs

    LINK:城市 谢邀,学弟说的一道毒瘤题. 没有真正的省选题目毒瘤 或者说 写O(n)的做法确实毒瘤. 这里给一个花20min就写完的非常好写的暴力. 容易想到枚举哪条边删掉 删掉之后考虑在哪两个点上 ...

随机推荐

  1. O(n*logn)级别的算法之一(归并排序及其优化)

    原理: 设两个有序的子序列(相当于输入序列)放在同一序列中相邻的位置上:array[low..m],array[m + 1..high],先将它们合并到一个局部的暂存序列 temp (相当于输出序列) ...

  2. MVC模式-----struts2框架

    MVC模式-----struts2框架 一.struts MVC模式 1.概述 MVC是模型(model)---视图model(view)---控制器(control)的缩写,是一种用于将逻辑.数据和 ...

  3. angular分页插件tm.pagination 解决触发二次请求的问题

    angular分页插件tm.pagination(解决触发二次请求的问题) DEMO:  http://jqvue.com/demo/tm.pagination/index.html#?current ...

  4. blfs(systemd版本)学习笔记-构建gnome桌面系统后的配置及安装的应用

    我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! 一.构建安装ibus-libpinyin的笔记地址:https://www.cnblogs.com/renren-study-n ...

  5. CSS字体样式属性

    font-size 字号大小 一般推荐使用相对长度(px ,em),不推荐使用绝对长度(in,cmm,mm,pt) font-family 字体 1.可以同时指定多个字体,中间用英文状态的逗号隔开,英 ...

  6. slice()和subString()

    substring() 方法用于提取字符串中介于两个指定下标之间的字符.slice()返回一个子片段,对原先的string没有影响,与subString的区别是,还可以用负数当参数,相当于是lengt ...

  7. Android Studio调试时遇见Install Repository and sync project的问题

    我们可以看到,报的错是“Failed to resolve: com.android.support:appcompat-v7:16.+”,也就是我们在build.gradle中最后一段中的compi ...

  8. Java相关问题整理

    1. OkHttpClient调用出现大量CLOSE_WAIT. 问题定位: 凡是系统中出现大量的CLOSE_WAIT,说明你的代码写的有问题,即:没有关闭连接. 在OkHttpClient中,默认时 ...

  9. (后端)Sql Server日期查询-SQL查询今天、昨天、7天内、30天(转)

    今天的所有数据: 昨天的所有数据: 7天内的所有数据: 30天内的所有数据: 本月的所有数据: 本年的所有数据: 查询今天是今年的第几天: select datepart(dayofyear,getD ...

  10. 上了IPD和CMMI,为什么还要搞敏捷?

    文/资深顾问 杨学明 现在国内许多产品创新型企业一旦研发团队上了规模,就会进行IPD体系的变革或CMMI的认证,但现在还有一种更加流程的开发模式,就是敏捷,华为公司早在2009年正式发文在全公司现在流 ...