[TJOI2017]城市
嘟嘟嘟
这题刚开始想复杂了,想什么dp去了,其实没那么难。
考虑断掉一条边,记分离出来的两棵子树为A和B,那么合并后的树的直径可能有三种情况:
1.A的直径。
2.B的直径
3.A的半径+边权+B的半径。
半径是啥?记从点\(i\)出发到树上任意一点的最长距离为\(f[i]\),则树的半径就是\(min \{ f[i] \}\)(此题需要min,严格定义我也不知道是max还是min)。
所以我们\(O(n)\)枚举断边,\(O(n)\)求树的直径和半径即可。
直径不必说,说一下怎么求半径。
对于点\(v\),记\(v\)的父亲为\(u\), \(v\)的半径有这么几种情况:
1.\(v\)子树内的最长链。
2.\(v\)子树外,\(u\)子树内的一条链 + \(dis(u, v)\)。
3.\(u\)子树外的最长链 + \(dis(u, v)\)。
对于情况1,求树的直径的时候就维护好了。
对于情况2,我们需要维护最长连和次长链。然后如果\(v\)在\(u\)的最长链上,就是\(u\)的次长链 + \(dis(u, v)\);否则就是\(u\)的最长链 + \(dis(u, v)\)。
对于情况3,在dfs的时候维护一个fro,表示\(u\)子树外的最长链,维护fro的时候也向情况2分两种情况,分别更新即可。
答案就是所以直径的min。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e3 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n;
struct Node
{
int x, y, w;
}t[maxn];
struct Edge
{
int nxt, to, w;
}e[maxn << 1];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], y, w};
head[x] = ecnt;
}
bool col[maxn];
int dp1[maxn], dp2[maxn], dia_Max = 0;
In void dfs(int now, int _f, int c)
{
dp1[now] = 0, col[now] = c;
int Max1 = 0, Max2 = 0;
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if((v = e[i].to) == _f) continue;
dfs(v, now, c);
if(dp1[v] + e[i].w > Max1) Max2 = Max1, Max1 = dp1[v] + e[i].w;
else if(dp1[v] + e[i].w > Max2) Max2 = dp1[v] + e[i].w;
}
dp1[now] = Max1; dp2[now] = Max2;
dia_Max = max(dia_Max, Max1 + Max2);
}
int f[maxn];
In void dfs2(int now, int _f, int fro)
{
int tp = 0;
for(int i = head[now], v; ~i; i = e[i].nxt)
{
if((v = e[i].to) == _f) continue;
if(dp1[v] + e[i].w == dp1[now])
{
f[v] = max(dp1[v], dp2[now] + e[i].w);
tp = max(dp2[now], fro);
}
else
{
f[v] = max(dp1[v], dp1[now] + e[i].w);
tp = max(dp1[now], fro);
}
f[v] = max(f[v], tp + e[i].w);
dfs2(v, now, tp + e[i].w);
}
}
int main()
{
Mem(head, -1);
n = read();
for(int i = 1; i < n; ++i)
{
int x = read(), y = read(), w = read();
t[i] = (Node){x, y, w};
addEdge(x, y, w), addEdge(y, x, w);
}
int ans = INF;
for(int i = 1; i < n; ++i)
{
dia_Max = 0;
dfs(t[i].x, t[i].y, 0), dfs(t[i].y, t[i].x, 1);
f[t[i].x] = dp1[t[i].x], f[t[i].y] = dp1[t[i].y];
dfs2(t[i].x, t[i].y, 0), dfs2(t[i].y, t[i].x, 0);
int pos1 = t[i].x, pos2 = t[i].y;
for(int j = 1; j <= n; ++j)
{
if(!col[j] && f[j] < f[pos1]) pos1 = j;
if(col[j] && f[j] < f[pos2]) pos2 = j;
}
ans = min(ans, max(dia_Max, f[pos1] + f[pos2] + t[i].w));
}
write(ans), enter;
return 0;
}
[TJOI2017]城市的更多相关文章
- 【BZOJ4890】[TJOI2017]城市(动态规划)
[BZOJ4890][TJOI2017]城市(动态规划) 题面 BZOJ 洛谷 题解 数据范围都这样了,显然可以暴力枚举断开哪条边. 然后求出两侧直径,暴力在直径上面找到一个点,使得其距离直径两端点的 ...
- [洛谷P3761] [TJOI2017]城市
洛谷题目链接:[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速 ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- bzoj4890[Tjoi2017]城市(树的半径)
4890: [Tjoi2017]城市 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 149 Solved: 91[Submit][Status][D ...
- [TJOI2017]城市(树的直径)
[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达, ...
- [BZOJ4890][TJOI2017]城市(DP)
题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收 ...
- BZOJ4890 & 洛谷3761:[TJOI2017]城市——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4890 https://www.luogu.org/problemnew/show/P3761 从加 ...
- [TJOI2017]城市 【树的直径+暴力+优化】
Online Judge:Luogu P3761 Label:树的直径,暴力 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有n座城市,n-1条高速公路,保证了 ...
- luogu P3761 [TJOI2017]城市 树的直径 bfs
LINK:城市 谢邀,学弟说的一道毒瘤题. 没有真正的省选题目毒瘤 或者说 写O(n)的做法确实毒瘤. 这里给一个花20min就写完的非常好写的暴力. 容易想到枚举哪条边删掉 删掉之后考虑在哪两个点上 ...
随机推荐
- JavaWeb学习日记----DTD
DTD:文档类型定义,可以定义合法的XML文档构建模块.使用一系列的合法标签元素来定义文档的结构. 现有一个XML文档内容如下: <?xml version="1.0"?&g ...
- Gvim 和vim 有什么区别
Gvim 和vim 有什么区别 Gvim是windows的 vim是linux的黑色的命令符 Gvim是单独的窗口下的vim,像notepad一样. vim就是在黑乎乎的cmd窗口下的编辑器.wind ...
- Android LiveData使用
LiveData是一个可观察的数据持有者类. 与常规observable不同,LiveData是生命周期感知的,当生命周期处于STARTED或RESUMED状态,则LiveData会将其视为活动状态, ...
- Chrome 开发者工具
打开开发工具 (1)在Chrome菜单中选择 更多工具 > 开发者工具. (2)在页面元素上右键点击,选择 "检查". (3)使用快捷键 Ctrl+Shift+I (Wind ...
- [CSS] 点击事件触发的动画
源码 https://github.com/YouXianMing/CSS-Animations/tree/master/Event 效果 细节 1) 一个完整的可回溯的动画至少包括了两种状态,以及两 ...
- Loadrunner 脚本开发-利用loadrunner开发Windows Sockets协议脚本
脚本开发-利用loadrunner开发Windows Sockets协议脚本 by:授客 QQ:1033553122 欢迎加入软件性能测试交流QQ群:7156436 实践举例 Socket服务端简单实 ...
- Android为TV端助力 自定义动画
android自定义动画注意是继承Animation,重写里面的initialize和applyTransformation,在initialize方法做一些初始化的工作,在applyTransfor ...
- Tab 菜单切换
<link rel="stylesheet" href="https://blog-static.cnblogs.com/files/hshen/layui.css ...
- 【效率工具】史上最好用的SSH一键登录脚本,超强更新!
说明 虽然已经是凌晨,但丝毫不能掩盖我激动的心情,今天完成了对GotoSSH的一次大更新,新增了两个肥肠实用的功能,我只能说,是真的好用,话不多说,先来看效果图: 普通的一键登录: 一键登录跳板机,然 ...
- 没有服务商如何购买ERP的序列号?
一.试用期(未过期) 站点版购买: 门店版购买: 二.试用期(使用时间<=15天) 三.试用期(已过期) 登录时会弹出以下弹窗 剩下的购买步骤与未过期时购买步骤一致 四.续费 剩下步骤与未过期时 ...