BZOJ4899 记忆的轮廓(概率期望+动态规划+决策单调性)
容易发现跟树没什么关系,可以预处理出每个点若走向分叉点期望走多少步才能回到上个存档点,就变为链上问题了。考虑dp,显然有f[i][j]表示在i~n中设置了j个存档点,其中i设置存档点的最优期望步数。转移枚举下一个存档点设在哪,则有f[i][j]=min(f[k][j-1]+d[i][k]),其中d[i][k]为从i号点存档点走到k号存档点其间没有别的存档点的期望步数。对d数组可以把一堆方程列出来手动加减消元得到式子,n2就可以求出。这样复杂度O(Tn3)。于是直接暴力就在darkbzoj上水过了。或者加一些乱七八糟的剪枝就能跑得飞快。然后有感性理解比较显然的一点是这个东西有决策单调性,于是就能做到O(Tn2logn)。证明估计得列一堆式子不太敢证了。然而由于d数组已经大到爆了精度,需要一些乱七八糟的处理,本来还以为是决策单调性写挂了调了半天一点卵用都没有。尽管这样还是没在bzoj上过掉,不知道bzoj有什么奇怪的精度问题。被恶心死了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 710
#define inf 1000000000
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,m,k,p[N<<],L[N],R[N],id[N],top,t;
double v[N<<],d[N][N],f[N][N],son[N<<];
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
for (int i=p[k];i;i=edge[i].nxt)
{
son[k]++;
dfs(edge[i].to);
v[k]+=v[edge[i].to]+;
}
if (son[k]) v[k]/=son[k];
son[k]++;
}
double calc(int i,int x,int y){return f[i-][y]+d[x][y];}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4899.in","r",stdin);
freopen("bzoj4899.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read(),m=read(),k=read();
memset(p,,sizeof(p));t=;
memset(son,,sizeof(son));
memset(v,,sizeof(v));
for (int i=;i<=m-n;i++)
{
int x=read(),y=read();
addedge(x,y);
}
for (int i=;i<=n;i++) dfs(i),v[i]++;
for (int i=;i<n;i++)
{
double t=;
for (int j=i;j<n;j++)
{
d[i][j+]=d[i][j]+t/son[j]+t*(son[j]-)/son[j]*v[j];
t/=son[j];
}
t=;double s=;
for (int j=i;j<n;j++)
{
s-=t*(son[j]-)/son[j];
d[i][j+]/=s;
t/=son[j];
}
}
for (int i=;i<n;i++) f[][i]=inf;
for (int i=;i<=n;i++)
for (int j=i+;j<=n;j++)
if (d[i][j]>inf) d[i][j]=1ll*inf*(j+);
for (int i=;i<=k;i++)
{
top=;id[]=n;L[]=,R[]=n-;
for (int j=n-;j>=;j--)
{
int l=,r=top,x=;
while (l<=r)
{
int mid=l+r>>;
if (L[mid]<=j&&R[mid]>=j) {x=mid;break;}
else if (L[mid]>j) l=mid+;
else r=mid-;
}
f[i][j]=calc(i,j,id[x]);
while (top&&R[top]<j&&calc(i,R[top],j)<calc(i,R[top],id[top])) top--;
l=L[top],r=min(j,R[top])-,x=L[top]-;
/*for (int p=r;p>=l;p--)
if (calc(i,p,j)<calc(i,p,id[top])) {x=p;break;}*/
while (l<=r)
{
int mid=l+r>>;
if (calc(i,mid,j)<calc(i,mid,id[top])) x=mid,l=mid+;
else r=mid-;
}
L[top]=x+;
if (x) top++,id[top]=j,L[top]=,R[top]=x;
}
}
/*for (int i=2;i<=k;i++)
for (int j=n-1;j>=1;j--)
{
f[i][j]=inf;
for (int x=j+1;x<=min(j+7+n/k,n);x++)
f[i][j]=min(f[i][j],calc(i,j,x));
}*/
printf("%.4f\n",f[k][]);
}
return ;
}
BZOJ4899 记忆的轮廓(概率期望+动态规划+决策单调性)的更多相关文章
- [BZOJ4899]:记忆的轮廓(概率DP)
题目传送门 题目描述: 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...
- BZOJ4899: 记忆的轮廓【概率期望DP】【决策单调性优化DP】
Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...
- [bzoj4899]记忆的轮廓 题解(毒瘤概率dp)
题目背景 四次死亡轮回后,昴终于到达了贤者之塔,当代贤者夏乌拉一见到昴就上前抱住了昴“师傅!你终于回来了!你有着和师傅一样的魔女的余香,肯定是师傅”.众所周知,大贤者是嫉妒魔女沙提拉的老公,400年前 ...
- Bzoj4899 记忆的轮廓
B. 记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我 ...
- BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)
设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...
- 【题解】亚瑟王 HNOI 2015 BZOJ 4008 概率 期望 动态规划
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 一道不简单的概率和期望dp题 根据期望的线性性质,容易想到,可以算出每张卡的期望伤害, ...
- BZOJ5305 HAOI2018苹果树(概率期望+动态规划)
每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和. 设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数. 枚 ...
- BZOJ4832 抵制克苏恩(概率期望+动态规划)
注意到A+B+C很小,容易想到设f[i][A][B][C]为第i次攻击后有A个血量为1.B个血量为2.C个血量为3的期望伤害,倒推暴力转移即可. #include<iostream> #i ...
- UOJ#196. 【ZJOI2016】线段树 概率期望,动态规划
原文链接www.cnblogs.com/zhouzhendong/p/UOJ196.html 题解 先离散化,设离散化后的值域为 $[0,m]$ . 首先把问题转化一下,变成:对于每一个位置 $i$ ...
随机推荐
- dsu on tree总结
dsu on tree 树上启发式合并.我并不知道为什么要叫做这个名字... 干什么的 可以在\(O(n\log n)\)的时间内完成对子树信息的询问,可横向对比把树按\(dfs\)序转成序列问题的\ ...
- 使用Python进行分布式系统协调 (ZooKeeper/Consul/etcd)
来源:naughty 链接:my.oschina.net/taogang/blog/410864 笔者之前的博文提到过,随着大数据时代的到来,分布式是解决大数据问题的一个主要手段,随着越来越多的分布式 ...
- day2 RHCE
1.配置SELINUX 在system1和system2上要求SeLinux的状态为enforcing.要求系统重启后依然生效. server [root@server0 ~]# getenforce ...
- 【BZOJ4553】[HAOI2016&TJOI2016]序列
[BZOJ4553][HAOI2016&TJOI2016]序列 题面 bzoj 洛谷 题解 一定要仔细看题啊qwq... 我们设$mn[i],mx[i]$表示第$i$个位置上最小出现.最大出现 ...
- (ex)Lucas总结
(ex)Lucas总结 普通Lucas 求 \[ C_n^m\;mod\;p \] 其中\(n,m,p\leq 10^5\)其中\(p\)为质数 公式不难背,那就直接背吧... \[ C_n^m\;m ...
- 基于Cocos2d-x-1.0.1的飞机大战游戏开发实例(上)
最近接触过几个版本的cocos2dx,决定每个大变动的版本都尝试一下.本实例模仿微信5.0版本中的飞机大战游戏,如图: 一.工具 1.素材:飞机大战的素材(图片.声音等)来自于网络 2.引擎:coco ...
- new表达式,operator new和placement new介绍
new/delete是c++中动态构造对象的表达式 ,一般情况下的new/delete都是指的new/delete表达式,这是一个操作符,和sizeof一样,不能改变其意义. new/delete表达 ...
- MongoDB开启权限认证
MongoDB默认安装完后,如果在配置文件中没有加上auth = true,是没有用户权限认证的,这样对于一个数据库来说是相对不安全的,尤其是在外网的情况下. 接下来是配置权限的过程: //切入到 ...
- DNS递归查询与迭代查询
注:一般TCP/IP的应用层或者OSI的会话.表示.应用层把数据称为数据或者信息,到了传输层把数据称为报文,到了最底层就是比特流了也就是字节流 DNS递归查询与迭代查询 基础知识 1.域名系统 2 ...
- ThinkPHP - 6 - 学习笔记(2015.5.4)
解决:OneThink 站点无法被友言uyan后台识别 打开友言uyan插件功能,但OneThink站点无法被友言uyan后台检测到.页面生成的uyan代码为: <!-- UY BEGIN -- ...