Tensorflow笔记——神经网络图像识别(一)前反向传播,神经网络八股
第一讲:人工智能概述


第三讲:Tensorflow框架



前向传播:


反向传播:



总的代码:
#coding:utf-8
#1.导入模块,生成模拟数据集
import tensorflow as tf
import numpy as np #np为科学计算模块
BATCH_SIZE = 8#表示一次喂入NN多少组数据,不能过大,会噎着
seed = 23455 #基于seed产生随机数
rng = np.random.RandomState(seed)
#随机数返回32*2列的矩阵,每行2个表示属性(体积和质量),作为输入数据集
X = rng.rand(32,2)
#从x这个矩阵中,取出每一行,判断如果和<1,y=1,否则,y=0
#作为输入数据集的标签(正确答案)
Y=[[int(x0+x1<1)] for (x0,x1) in X]
print("X:\n",X)
print("Y:\n",Y) #2.定义神经网络的输入,参数和输出,定义前向传播过程
x = tf.placeholder(tf.float32,(None,2))
y_ = tf.placeholder(tf.float32,(None,1)) w1 = tf.Variable(tf.random_normal([2,3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3,1], stddev=1, seed=1)) a = tf.matmul(x, w1)
y = tf.matmul(a, w2) #3.定义损失函数及反向传播方法
loss = tf.reduce_mean(tf.square(y-y_))
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)#梯度下降
#train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(loss)
#train_step = tf.train.AdamOptimizer(0.001,0.9).minimize(loss) #4.生成会话,训练STEPS轮
with tf.Session() as sess:
init_op=tf.global_variables_initializer()
sess.run(init_op)
#输出目前还未训练的参数取值
print("w1:\n", sess.run(w1))
print("w2:\n", sess.run(w2))
print("\n") #训练模型
STEPS=3000
#训练3000轮,每次从训练集中挑选strart到end的数据,喂入数据
for i in range(STEPS):
start = (i*BATCH_SIZE)%32
end = start + BATCH_SIZE
sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end]})
if i%500 == 0:#每500次打印一轮
total_loss = sess.run(loss,feed_dict={x:X,y_:Y})
print("After %d training steps,loss on all data is %g" % (i,total_loss)) #输出训练后的参数取值
print("\n")
print("w1:\n", sess.run(w1))
print("w2:\n", sess.run(w2))
输出的结果:
X:
[[ 0.83494319 0.11482951]
[ 0.66899751 0.46594987]
[ 0.60181666 0.58838408]
[ 0.31836656 0.20502072]
[ 0.87043944 0.02679395]
[ 0.41539811 0.43938369]
[ 0.68635684 0.24833404]
[ 0.97315228 0.68541849]
[ 0.03081617 0.89479913]
[ 0.24665715 0.28584862]
[ 0.31375667 0.47718349]
[ 0.56689254 0.77079148]
[ 0.7321604 0.35828963]
[ 0.15724842 0.94294584]
[ 0.34933722 0.84634483]
[ 0.50304053 0.81299619]
[ 0.23869886 0.9895604 ]
[ 0.4636501 0.32531094]
[ 0.36510487 0.97365522]
[ 0.73350238 0.83833013]
[ 0.61810158 0.12580353]
[ 0.59274817 0.18779828]
[ 0.87150299 0.34679501]
[ 0.25883219 0.50002932]
[ 0.75690948 0.83429824]
[ 0.29316649 0.05646578]
[ 0.10409134 0.88235166]
[ 0.06727785 0.57784761]
[ 0.38492705 0.48384792]
[ 0.69234428 0.19687348]
[ 0.42783492 0.73416985]
[ 0.09696069 0.04883936]]
Y:
[[1], [0], [0], [1], [1], [1], [1], [0], [1], [1], [1], [0], [0], [0], [0], [0], [0], [1], [0], [0], [1], [1], [0], [1], [0], [1], [1], [1], [1], [1], [0], [1]]
w1:
[[-0.81131822 1.48459876 0.06532937]
[-2.4427042 0.0992484 0.59122431]]
w2:
[[-0.81131822]
[ 1.48459876]
[ 0.06532937]] After 0 training steps,loss on all data is 5.13118
After 500 training steps,loss on all data is 0.429111
After 1000 training steps,loss on all data is 0.409789
After 1500 training steps,loss on all data is 0.399923
After 2000 training steps,loss on all data is 0.394146
After 2500 training steps,loss on all data is 0.390597 w1:
[[-0.70006633 0.9136318 0.08953571]
[-2.3402493 -0.14641267 0.58823055]]
w2:
[[-0.06024267]
[ 0.91956186]
[-0.0682071 ]]
Tensorflow笔记——神经网络图像识别(一)前反向传播,神经网络八股的更多相关文章
- 深度学习课程笔记(三)Backpropagation 反向传播算法
深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS1 ...
- Deep Learning 学习笔记(7):神经网络的求解 与 反向传播算法(Back Propagation)
反向传播算法(Back Propagation): 引言: 在逻辑回归中,我们使用梯度下降法求参数方程的最优解. 这种方法在神经网络中并不能直接使用, 因为神经网络有多层参数(最少两层),(?为何不能 ...
- ML(5)——神经网络2(BP反向传播)
上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全 ...
- 深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
- 【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 4—反向传播神经网络
课程笔记 Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning 作业说明 Exercise 4,Week 5,实现反向传播 ba ...
- 第四节课-反向传播&&神经网络1
2017-08-14 这节课的主要内容是反向传播的介绍,非常的详细,还有神经网络的部分介绍,比较简短. 首先是对求导,梯度的求解.反向传播的核心就是将函数进行分解,分段求导,前向计算损失,反向计算各个 ...
- 深度学习——深度神经网络(DNN)反向传播算法
深度神经网络(Deep Neural Networks,简称DNN)是深度学习的基础. 回顾监督学习的一般性问题.假设我们有$m$个训练样本$\{(x_1, y_1), (x_2, y_2), …, ...
- AI 反向传播神经网络
反向传播(Back Propagation,简称BP)神经网络
- Python3 反向传播神经网络-Min-Batch(根据吴恩达课程讲解编写)
# -*- coding: utf-8 -*- """ Created on Sat Jan 20 13:47:54 2018 @author: markli " ...
随机推荐
- POJ 2195 Going Home(费用流)
http://poj.org/problem?id=2195 题意: 在一个网格地图上,有n个小人和n栋房子.在每个时间单位内,每个小人可以往水平方向或垂直方向上移动一步,走到相邻的方格中.对每个小人 ...
- LA 3938 动态最大连续和(线段树)
https://vjudge.net/problem/UVALive-3938 题意:给出一个长度为n的整数序列D,你的任务是对m个询问作出回答.对于询问(a,b),需要找到两个下标x和y,使得a≤x ...
- 利用JavaScript将页面截图生成图片传给后台的插件:html2canvas
利用JavaScript将页面截图生成图片传给后台的插件:html2canvas 一.总结 一句话总结: 10 <script type="text/javascript"& ...
- Java网络编程和NIO详解6:Linux epoll实现原理详解
Java网络编程和NIO详解6:Linux epoll实现原理详解 本系列文章首发于我的个人博客:https://h2pl.github.io/ 欢迎阅览我的CSDN专栏:Java网络编程和NIO h ...
- Java网络编程和NIO详解5:Java 非阻塞 IO 和异步 IO
Java网络编程和NIO详解5:Java 非阻塞 IO 和异步 IO Java 非阻塞 IO 和异步 IO 转自https://www.javadoop.com/post/nio-and-aio 本系 ...
- HIVE之常用字符串函数
可以参考: 博文 : https://www.iteblog.com/archives/1639.html
- UVA-11212 Editing a Book (IDA*)
题目大意:将一个数字序列以最少的剪切次数粘贴成另一个数字序列. 题目分析:很显然,最坏的情况是需要n-1次剪切,搜索层数不多,但每一层的状态数目又非常庞大,适宜使用IDA*.考虑每一个序列后续不正确的 ...
- 也来说说C#异步委托 (转自 Rising_Sun)
前些日子,看到园子里面有人用老王喝茶的例子讲解了一下同步和异步,虽然没有代码实现,但是能够通俗易懂的讲解了同步.异步.阻塞.非阻塞的关系了,今天借题发挥,用一个热水器加热洗澡的例子来具体演示一下C#使 ...
- HTML <select> 标签
定义和用法 select 元素可创建单选或多选菜单. <select&> 元素中的 <option> 标签用于定义列表中的可用选项. HTML 4.01 与 HTML ...
- 【Scipy】初步认识
Scipy扩展包括多种多样的工具箱,这些工具致力于解决科学计算中的常见问题.不同的子模块对应不同的应用,比如插值, 整合, 优化, 图像处理, 统计, 特殊功能等等. scipy可以和其他的标准科学计 ...