题目大意:给一棵$n(n\leqslant10^5)$个点的树,有$q(q\leqslant10^5)$次询问,每次询问给出$k,m,r$表示把以下$k$个点分成不超过$m$组,使得在以$r$为根的情况下,组内的任意两个结点不存在祖先关系。$\sum k\leqslant10^5,m\leqslant300$

题解:针对一次询问,可以想到一个$DP$,$f_{i,j}$表示处理到第$i$个点(假设为$u$),$u$的祖先都已经处理完,这$i$个点放到$j$组的方案数。$f_{i,j}=f_{i-1,j-1}+f_{i-1,j-father_u}$,$father_u$表示这$k$个点中$u$的祖先的个数。

现在考虑如何处理$DP$顺序,发现可以深度由浅到深处理,$dfs$序也是可以的。而后再考虑如何处理$father$,我想到了几种写法:

  1. 用树状数组,给子树加,然后查询需要的点,这种写法因为换根需要分类讨论,复杂度$O(k\log_2n)$。
  2. 树剖后单点加,询问需要的点到根的和(这种写法在写之前被我以为需要分类讨论),复杂度$O(k\log_2^2n)$。
  3. 建虚树,直接$dfs$,复杂度$O(k\log_2k)$。

我写的时候不想分类讨论,就选择了第$3$种,在我交的时候成功跑到$rank$倒一。写题解的时候突然发现这种写法似乎复杂度最优秀?自带大常数

卡点:树剖求$LCA$时$top$更新错

C++ Code:

#include <algorithm>
#include <cstdio>
#include <iostream>
#define maxn 100010
const int mod = 1e9 + 7;
inline void reduce(int &x) { x += x >> 31 & mod; } int head[maxn], cnt;
struct Edge {
int to, nxt;
} e[maxn << 1];
inline void addedge(int a, int b) {
e[++cnt] = (Edge) { b, head[a] }; head[a] = cnt;
e[++cnt] = (Edge) { a, head[b] }; head[b] = cnt;
} namespace Tree {
int sz[maxn], dep[maxn], fa[maxn];
int dfn[maxn], out[maxn], top[maxn], idx;
#define f top
int find(int x) { return x == f[x] ? x : (f[x] = find(f[x])); }
#undef f
void dfs(int u) {
int son = 0; top[u] = u;
dfn[u] = ++idx, sz[u] = 1;
for (int i = head[u], v; i; i = e[i].nxt) {
v = e[i].to;
if (v != fa[u]) {
dep[v] = dep[u] + 1, fa[v] = u;
dfs(v), sz[u] += sz[v];
if (sz[v] > sz[son]) son = v;
}
}
out[u] = idx; if (son) top[son] = u;
}
inline int LCA(int x, int y) {
while (top[x] != top[y]) {
if (dep[top[x]] > dep[top[y]]) x = fa[top[x]];
else y = fa[top[y]];
}
return dep[x] < dep[y] ? x : y;
}
}
using Tree::dfn;
using Tree::out; int n, q, k, m, r; int Mark[maxn], f[305], idx;
inline bool cmp(int x, int y) { return dfn[x] < dfn[y]; } void dfs(int u, int fa = 0, int num = 0) {
if (Mark[u]) {
++idx;
for (int i = std::min(m, idx); ~i; --i) {
if (i > num) f[i] = (static_cast<long long> (i - num) * f[i] + f[i - 1]) % mod;
else f[i] = 0;
}
++num;
}
for (int i = head[u], v; i; i = e[i].nxt) {
v = e[i].to;
if (v != fa) dfs(v, u, num);
} head[u] = Mark[u] = 0;
} void solve() {
static int List[maxn << 1], tot, S[maxn], top;
std::cin >> k >> m >> r;
for (int i = 0; i < k; ++i) {
std::cin >> List[i];
Mark[List[i]] = 1;
}
tot = k;
if (!Mark[r]) List[tot++] = r; std::sort(List, List + tot, cmp);
for (int i = tot - 1; i; --i) List[tot++] = Tree::LCA(List[i], List[i - 1]);
tot = (std::sort(List, List + tot, cmp), std::unique(List, List + tot) - List);
top = 0;
for (int I = 0, i = *List; I < tot; i = List[++I]) {
while (top && out[S[top]] < dfn[i]) --top;
if (top) addedge(S[top], i);
S[++top] = i;
} f[idx = 0] = 1, dfs(r);
int ans = 0;
for (int i = 1; i <= m; ++i) reduce(ans += f[i] - mod);
std::cout << ans << '\n'; cnt = 0;
__builtin_memset(f, 0, m + 1 << 2);
} int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> q;
for (int i = 1, a, b; i < n; ++i) {
std::cin >> a >> b;
addedge(a, b);
}
Tree::dfs(1);
for (int i = 1; i <= n; ++i) Tree::find(i);
__builtin_memset(head, 0, n + 1 << 2), cnt = 0; while (q --> 0) solve();
return 0;
}

  

[CF1111E]Tree的更多相关文章

  1. CF1111E Tree 树链剖分,DP

    CF1111E Tree 过年了,洛咕还没爬这次的题,先放个CF的链接吧. 补个LG传送门. 对于每个询问点\(x\),设它的祖先即不能和它放在同一个集合中的点的个数为\(f[x]\),设\(dp[i ...

  2. CF1111E Tree 动态规划+LCT

    这个题的思路非常好啊. 我们可以把 $k$ 个点拿出来,那么就是求将 $k$ 个点划分成不大于 $m$ 个集合的方案数. 令 $f[i][j]$ 表示将前 $i$ 个点划分到 $j$ 个集合中的方案数 ...

  3. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  4. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  5. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  6. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  7. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  8. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  9. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

随机推荐

  1. ASP.NET SignalR 与 LayIM2.0 配合轻松实现Web聊天室(零) 前言(内容已过期,阅读请慎重)

    2018-09-19 更新 :现在已经更新ASP.NET Core Middleware版本.对.NET Core SignalR感兴趣的朋友移步:https://github.com/fanpan2 ...

  2. rpmforge

    Could not retrieve mirrorlist http://mirrorlist.repoforge.org/el6/mirrors-rpmforge error was : PYCUR ...

  3. MES与ERP的区别(转)

    MES和ERP有很大的不同,主要体现在以下几个方面: 1.管理的目标不同 ERP的重点在于财务,也就是从财务的角度出发来对企业的资源进行计划,相关的模块也是以财务为核心的展开,最终的管理数据也是集中到 ...

  4. 利用webbrowser自动查取地点坐标

    概述 有时候我们需要去查询某些地点的坐标,那么我们可以用百度提供的坐标拾取系统http://api.map.baidu.com/lbsapi/getpoint/index.html,但是会发现它只能一 ...

  5. Jenkins单元测试

    Jenkins提供了一个开箱即用功能来选择JUnit,并提供了一系列的插件进行单元测试等技术,一个例子是 MSTest 的.Net单元测试.如果你打下面的链接 https://wiki.jenkins ...

  6. vue2.0做移动端开发用到的相关插件和经验总结

    最近一直在做移动端微信公众号项目的开发,也是我首次用vue来开发移动端项目,前期积累的移动端开发经验较少.经过这个项目的锻炼,加深了对vue相关知识点的理解和运用,同时,在项目中所涉及到的微信api( ...

  7. 445. Cosine Similarity【LintCode java】

    Description Cosine similarity is a measure of similarity between two vectors of an inner product spa ...

  8. [kuangbin带你飞]专题一 简单搜索 回顾总结

    第二题:bfs,忘了将queue清空. 第三题:bfs,记得使用vis数组,防止重复入队

  9. RESTful源码笔记之RESTful Framework的基本组件

    快速实例 Quickstart 序列化 创建一个序列化类 简单使用 开发我们的Web API的第一件事是为我们的Web API提供一种将代码片段实例序列化和反序列化为诸如json之类的表示形式的方式. ...

  10. 2017年度网络安全服务企业TOP50

    何谓“大安全”? 近几年来,网络安全和信息安全领域不时出现引发社会各界关注的事件. 2014年,政府采购计划对WIN8说“不”,同年,中央网络安全和信息化领导小组成立,将网络安全上升到了国家战略高度, ...