QuantLib 金融计算——数学工具之插值
如果未做特别说明,文中的程序都是 Python3 代码。
QuantLib 金融计算——数学工具之插值
载入模块
import QuantLib as ql
import scipy
print(ql.__version__)
1.12
概述
“插值”是量化金融中最常用的工具之一,已知一组离散点以及未知函数 \(f\) 在这些点上的值 \((x_i , f(x_i )) i \in \{0, \dots, n\}\),要近似求出任意一点 \(x \in [x_0 , x_n ]\) 上的函数值。标准的应用场景是对收益率曲线、波动率微笑曲线和波动率曲面的插值。quantlib-python 提供了下列一维和二维插值方法:
LinearInterpolation
(1-D)LogLinearInterpolation
(1-D)BackwardFlatInterpolation
(1-D)ForwardFlatInterpolation
(1-D)BilinearInterpolation
(2-D)BicubicSpline
(2-D)
一维插值方法
一维插值方法常用于收益率曲线、波动率微笑曲线,其对象的构造基本如下:
myInt = XXXInterpolation(x,
y)
x
:浮点数序列,若干离散的自变量y
:浮点数序列,自变量对应的函数值,与x
等长
插值类定义了 __call__
方法,一个插值类对象的使用方式如下,作为一个函数
myInt(x, allowExtrapolation)
x
:浮点数,要插值的点allowExtrapolation
:布尔型,allowExtrapolation
为True
意味着允许外推,默认值是False
。
例子 1
def testingInterpolations1():
xVec = [0.0, 1.0, 2.0, 3.0, 4.0]
yVec = [scipy.exp(x) for x in xVec]
linInt = ql.LinearInterpolation(xVec, yVec)
print("Exp at 0.0 ", linInt(0.0))
print("Exp at 0.5 ", linInt(0.5))
print("Exp at 1.0 ", linInt(1.0))
# Exp at 0.0 1.0
# Exp at 0.5 1.8591409142295225
# Exp at 1.0 2.718281828459045
二维插值方法
二维插值方法常用于波动率曲面,其对象的构造基本如下:
myInt = XXXInterpolation(x,
y,
m)
x
:浮点数序列,x 轴上的若干离散的自变量y
:浮点数序列,y 轴上的若干离散的自变量,与x
等长m
:矩阵,函数在x
和y
所张成的网格上的取值
插值类定义了 __call__
方法,一个插值类对象的使用方式如下,作为一个函数
myInt(x, y, allowExtrapolation)
x
、y
:浮点数,分别是要插值的点在 x 和 y 轴上的坐标allowExtrapolation
:布尔型,allowExtrapolation
为True
意味着允许外推,默认值是False
。
例子 2
def testingInterpolations2():
xVec = [float(i) for i in range(10)]
yVec = [float(i) for i in range(10)]
M = ql.Matrix(len(xVec), len(yVec))
for rowIt in range(len(xVec)):
for colIt in range(len(yVec)):
M[rowIt][colIt] = scipy.sin(xVec[rowIt]) + scipy.sin(yVec[colIt])
bicubIntp = ql.BicubicSpline(
xVec, yVec, M)
x = 0.5
y = 4.5
print("Analytical Value: ", scipy.sin(x) + scipy.sin(y))
print("Bicubic Value: ", bicubIntp(x, y))
testingInterpolations4()
Analytical Value: -0.498104579060894
Bicubic Value: -0.49656170664824184
QuantLib 金融计算——数学工具之插值的更多相关文章
- QuantLib 金融计算——数学工具之数值积分
目录 QuantLib 金融计算--数学工具之数值积分 概述 常见积分方法 高斯积分 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之数值积分 载入模 ...
- QuantLib 金融计算——数学工具之求解器
目录 QuantLib 金融计算--数学工具之求解器 概述 调用方式 非 Newton 算法(不需要导数) Newton 算法(需要导数) 如果未做特别说明,文中的程序都是 Python3 代码. Q ...
- QuantLib 金融计算——数学工具之优化器
目录 QuantLib 金融计算--数学工具之优化器 概述 Optimizer Constraint OptimizationMethod EndCriteria 示例 Rosenbrock 问题 校 ...
- QuantLib 金融计算——数学工具之随机数发生器
目录 QuantLib 金融计算--数学工具之随机数发生器 概述 伪随机数 正态分布(伪)随机数 拟随机数 HaltonRsg SobolRsg 两类随机数的收敛性比较 如果未做特别说明,文中的程序都 ...
- QuantLib 金融计算
我的微信:xuruilong100 <Implementing QuantLib>译后记 QuantLib 金融计算 QuantLib 入门 基本组件之 Date 类 基本组件之 Cale ...
- QuantLib 金融计算——高级话题之模拟跳扩散过程
目录 QuantLib 金融计算--高级话题之模拟跳扩散过程 跳扩散过程 模拟算法 面临的问题 "脏"的方法 "干净"的方法 实现 示例 参考文献 如果未做特别 ...
- QuantLib 金融计算——收益率曲线之构建曲线(2)
目录 QuantLib 金融计算--收益率曲线之构建曲线(2) YieldTermStructure 问题描述 Piecewise** 分段收益率曲线的原理 Piecewise** 对象的构造 Fit ...
- QuantLib 金融计算——自己动手封装 Python 接口(1)
目录 QuantLib 金融计算--自己动手封装 Python 接口(1) 概述 QuantLib 如何封装 Python 接口? 自己封装 Python 接口 封装 Array 和 Matrix 类 ...
- QuantLib 金融计算——基本组件之 Currency 类
目录 QuantLib 金融计算--基本组件之 Currency 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Cu ...
随机推荐
- Oracle GoldenGate 三、加密
写在开始前 从上周开始,我花了大量的业余时间阅读GoldenGate官方文档,并根据文档实践和进一步学习了解GoldenGate,以下便是根据官方文档理解总结的GoldenGate学习内容: Orac ...
- ramfs和tmpfs的区别
简介 ramfs和tmpfs是在内存上建立的文件系统(Filesystem).其优点是读写速度很快,但存在掉电丢失的风险.如果一个进程的性能瓶颈是硬盘的读写,那么可以考虑在ramfs或tmpfs上进行 ...
- Linux安装服务器
[实验:按照下述要求安装一台Server] /boot 100M / 10G /data 50G /var/ftp LVM 6G :/dev/vg_ftp/lv_ftp swap 2048M 主机名: ...
- Freedom DownTime
Storyline Computer hackers are being portrayed as the newest brand of terrorists. This is a story of ...
- PHP(九)数组(2)
- JS+MySQL获取 京东 省市区 地区
采集了一下JD的省市区地区 (非常简单,只是做个记录) 1.建表:account_area 2.进入页面: https://reg.jd.com/reg/company 在浏览器(Firefox) ...
- .NET基础 (15)委托
委托1 请解释委托的基本原理2 委托回调静态方法和实例方法有何区别3 什么是链式委托4 链式委托的执行顺序是怎么样的5 可否定义拥有返回值的方法的委托链6 委托通常可以应用在哪些场合 委托1 请解释委 ...
- Angularjs 通过directive实现验证两次输入是否一致的功能
实现效果: 1> 当输入确认密码时验证: 2> 当输入密码时验证: 实现步骤: 1.页面代码: <input class="form-control" type= ...
- Linux socat轻松实现TCP/UDP端口转发
1.TCP端口转发 socat -d TCP4-LISTEN:,reuseaddr,fork TCP4: 2.UDP端口转发 socat -T UDP4-LISTEN:,reuseaddr,fork ...
- struts1.x和struts2.x之间的一些区别
转载自http://blog.csdn.net/john2522/article/details/7436307/ struts2不是struts1的升级,而是继承的webwork的血统,它吸收了st ...