如果未做特别说明,文中的程序都是 Python3 代码。

QuantLib 金融计算——数学工具之插值

载入模块

import QuantLib as ql
import scipy print(ql.__version__)
1.12

概述

“插值”是量化金融中最常用的工具之一,已知一组离散点以及未知函数 \(f\) 在这些点上的值 \((x_i , f(x_i )) i \in \{0, \dots, n\}\),要近似求出任意一点 \(x \in [x_0 , x_n ]\) 上的函数值。标准的应用场景是对收益率曲线、波动率微笑曲线和波动率曲面的插值。quantlib-python 提供了下列一维和二维插值方法:

  • LinearInterpolation(1-D)
  • LogLinearInterpolation(1-D)
  • BackwardFlatInterpolation(1-D)
  • ForwardFlatInterpolation(1-D)
  • BilinearInterpolation(2-D)
  • BicubicSpline(2-D)

一维插值方法

一维插值方法常用于收益率曲线、波动率微笑曲线,其对象的构造基本如下:

myInt = XXXInterpolation(x,
y)
  • x:浮点数序列,若干离散的自变量
  • y:浮点数序列,自变量对应的函数值,与 x 等长

插值类定义了 __call__ 方法,一个插值类对象的使用方式如下,作为一个函数

myInt(x, allowExtrapolation)
  • x:浮点数,要插值的点
  • allowExtrapolation:布尔型,allowExtrapolationTrue 意味着允许外推,默认值是 False

例子 1

def testingInterpolations1():
xVec = [0.0, 1.0, 2.0, 3.0, 4.0]
yVec = [scipy.exp(x) for x in xVec] linInt = ql.LinearInterpolation(xVec, yVec) print("Exp at 0.0 ", linInt(0.0))
print("Exp at 0.5 ", linInt(0.5))
print("Exp at 1.0 ", linInt(1.0))
# Exp at 0.0   1.0
# Exp at 0.5 1.8591409142295225
# Exp at 1.0 2.718281828459045

二维插值方法

二维插值方法常用于波动率曲面,其对象的构造基本如下:

myInt = XXXInterpolation(x,
y,
m)
  • x:浮点数序列,x 轴上的若干离散的自变量
  • y:浮点数序列,y 轴上的若干离散的自变量,与 x 等长
  • m:矩阵,函数在 xy 所张成的网格上的取值

插值类定义了 __call__ 方法,一个插值类对象的使用方式如下,作为一个函数

myInt(x, y, allowExtrapolation)
  • xy:浮点数,分别是要插值的点在 x 和 y 轴上的坐标
  • allowExtrapolation:布尔型,allowExtrapolationTrue 意味着允许外推,默认值是 False

例子 2

def testingInterpolations2():
xVec = [float(i) for i in range(10)]
yVec = [float(i) for i in range(10)] M = ql.Matrix(len(xVec), len(yVec)) for rowIt in range(len(xVec)):
for colIt in range(len(yVec)):
M[rowIt][colIt] = scipy.sin(xVec[rowIt]) + scipy.sin(yVec[colIt]) bicubIntp = ql.BicubicSpline(
xVec, yVec, M) x = 0.5
y = 4.5 print("Analytical Value: ", scipy.sin(x) + scipy.sin(y))
print("Bicubic Value: ", bicubIntp(x, y)) testingInterpolations4()
Analytical Value:   -0.498104579060894
Bicubic Value: -0.49656170664824184

QuantLib 金融计算——数学工具之插值的更多相关文章

  1. QuantLib 金融计算——数学工具之数值积分

    目录 QuantLib 金融计算--数学工具之数值积分 概述 常见积分方法 高斯积分 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之数值积分 载入模 ...

  2. QuantLib 金融计算——数学工具之求解器

    目录 QuantLib 金融计算--数学工具之求解器 概述 调用方式 非 Newton 算法(不需要导数) Newton 算法(需要导数) 如果未做特别说明,文中的程序都是 Python3 代码. Q ...

  3. QuantLib 金融计算——数学工具之优化器

    目录 QuantLib 金融计算--数学工具之优化器 概述 Optimizer Constraint OptimizationMethod EndCriteria 示例 Rosenbrock 问题 校 ...

  4. QuantLib 金融计算——数学工具之随机数发生器

    目录 QuantLib 金融计算--数学工具之随机数发生器 概述 伪随机数 正态分布(伪)随机数 拟随机数 HaltonRsg SobolRsg 两类随机数的收敛性比较 如果未做特别说明,文中的程序都 ...

  5. QuantLib 金融计算

    我的微信:xuruilong100 <Implementing QuantLib>译后记 QuantLib 金融计算 QuantLib 入门 基本组件之 Date 类 基本组件之 Cale ...

  6. QuantLib 金融计算——高级话题之模拟跳扩散过程

    目录 QuantLib 金融计算--高级话题之模拟跳扩散过程 跳扩散过程 模拟算法 面临的问题 "脏"的方法 "干净"的方法 实现 示例 参考文献 如果未做特别 ...

  7. QuantLib 金融计算——收益率曲线之构建曲线(2)

    目录 QuantLib 金融计算--收益率曲线之构建曲线(2) YieldTermStructure 问题描述 Piecewise** 分段收益率曲线的原理 Piecewise** 对象的构造 Fit ...

  8. QuantLib 金融计算——自己动手封装 Python 接口(1)

    目录 QuantLib 金融计算--自己动手封装 Python 接口(1) 概述 QuantLib 如何封装 Python 接口? 自己封装 Python 接口 封装 Array 和 Matrix 类 ...

  9. QuantLib 金融计算——基本组件之 Currency 类

    目录 QuantLib 金融计算--基本组件之 Currency 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Cu ...

随机推荐

  1. Gcc对头文件与库文件的搜索路径

    一.简介 对头文件与库文件的搜索路径不太清楚,编译.运行时老碰到问题,ldd查看程序的链接时,总是出现unkown链接. 二.头文件 gcc 在编译时寻找所需要的头文件 : 1)搜寻会从-I开始 2) ...

  2. bzr: ERROR: No push location known or specified.

    出现这种错误,要先uncommit,然后拉带最新版本,再commit最后push

  3. Laravel中Trait的用法实例详解

    本文实例讲述了Laravel中Trait的用法.分享给大家供大家参考,具体如下: 看看PHP官方手册对Trait的定义: 自 PHP 5.4.0 起,PHP 实现了代码复用的一个方法,称为 trait ...

  4. 命令: go build

    命令: go build 参考: https://studygolang.com/articles/9463 go help build 构建编译由导入路径命名的包,以及它们的依赖关系,但它不会安装结 ...

  5. 使用junit单元测试SpringMvc

    对于有依赖关系的方法,junit测试会有些麻烦,可以用@before @after之类的创建数据库连接,然后进行测试,但是有些太麻烦了. 所以就使用一下这个:org.springframework.t ...

  6. JAVA array,map 转 json 字符串

    public class User { private String username; private String password; public String getUsername() { ...

  7. spring常用接口 InitializingBean的作用

    工作中遇到spring接口中的InitializingBean接口.浅浅的解说一下. --------------------------------------------------------- ...

  8. HAService 刨坑

    High availability is a characteristic of a system, which describes the duration (length of time) for ...

  9. Python之模块和包学习

    模块简介 python是由一系列的模块组成的,每个模块就是一个py为后缀的文件,同时模块也是一个命名空间,从而避免了变量名称冲突的问题.模块我们就可以理解为lib库,如果需要使用某个模块中的函数或对象 ...

  10. [转]构建基于WCF Restful Service的服务

    本文转自:http://www.cnblogs.com/scy251147/p/3566638.html 前言 传统的Asmx服务,由于遵循SOAP协议,所以返回内容以xml方式组织.并且客户端需要添 ...