动态规划专题(三)——数位DP
前言
数位\(DP\) 真的是最恶心的\(DP\)。
简介
看到那种给你两个数,让你求这两个数之间符合条件的数的个数,且这两个数非常大,这样的题目一般就是 数位\(DP\) 题。
数位\(DP\)一般都用于计数。
具体实现
数位\(DP\)有两种实现方法:\(DP\)预处理+乱搞求答案以及记忆化搜索。
个人感觉用记忆化搜索来实现要比较容易一些(第一种做法我是真的不会)。
数位\(DP\)在求解的过程中运用了前缀和的思想,即要求\(l\sim r\)范围内的解的个数,就相当于用\(0\sim r\)范围内的解的个数减去\(0\sim l-1\)范围内解的个数即可。
模板
贴一波记忆化搜索的模板:
class Class_DigitalDP//数位DP(记忆化搜索实现)
{
private:
#define Size 15//如果是int范围内,数字长度不会超过15,这个Size要视题目而定
int len,num[Size],f[Size][10];//len存储数字长度,num记录数字的每一位,f则用于记忆化
inline void Init(LL x) {len=0;while(x) num[++len]=x%10,x/=10;num[len+1]=0;}//初始化,将x这个数字按位保存下来
inline int dfs(int x,int s,int flag)//x记录剩余的位数,s记录当前的状态,flag记录当前是否肯定在求解的范围内(0表示不一定,1表示一定)
{
register int i,lim=9,w=0;//w用于统计答案
if(!x) return OK(s);//如果剩余位数为0,就判断当前状态是否满足条件,并退出函数
if(flag&&~f[x][s]) return f[x][s];//如果当前状态肯定在求解范围内,且已访问并求解过当前状态,就返回曾经求解出的答案
if(!flag) (Right(num[x])&&(w+=dfs(x-1,GetStatus(s,num[x]),0),0),lim=num[x]-1;//如果不保证在求解范围内,则对这一位上的最大值单独处理,并仍不能保证在求解范围内
for(i=0;i<=lim;++i) if(Right(i)) w+=dfs(x-1,GetStatus(s,i),1);//枚举每一个数字,如果这个数字符合条件,就继续搜索
if(flag) f[x][s]=w;//如果当前状态肯定在求解的范围内,就将求解出的答案记录下来,实现记忆化
return w;//返回答案
}
public:
Class_DigitalDP() {for(register int i=0,j;i<Size;++i) for(j=0;j<9;++j) f[i][j]=-1;}//初始化f数组为-1
inline int GetAns(int x) {return (void)(Init(x)),dfs(len,0,0);}//将这个数按位保存下来,然后记忆化搜索求解
}DigitalDP;
几道例题
照常贴几道例题:
第一道例题: 【BZOJ3209】花神的数论题
一道二进制的数位\(DP\),可以发现用\(DP\)预处理得到的是一个杨辉三角形... ...
第二道例题: 【BZOJ1833】[ZJOI2010] count 数字计数
比较经典的数位\(DP\)题,关键在于要判前导\(0\)。
第三道例题: 【HDU4507】恨7不成妻
应该是这几道题里我唯一一道写记忆化搜索的,需要加上一点恶心的数学转化。
动态规划专题(三)——数位DP的更多相关文章
- 【专题】数位DP
[资料] ★记忆化搜索:数位dp总结 之 从入门到模板 by wust_wenhao 论文:浅谈数位类统计问题 数位计数问题解法研究 [记忆化搜索] 数位:数字从低位到高位依次为0~len-1. 高位 ...
- UESTC 884 方老师的专题讲座 --数位DP
定义:cnt[L][K]表示长度为L,最高位为K的满足条件C的个数. 首先预处理出cnt数组,枚举当前长度最高位和小一个长度的最高位,如果相差大于2则前一个加上后一个的方法数. 然后给定n,计算[1, ...
- [专题总结]数位DP
总结: 1:第i个数符合要求了,所以接下来的数都可以.如果没限制, 那么是有 10i-1 个.如果有限制,那么是 (nowx % 10i-1)+1 . 2:两种状态设置 有设状态d ...
- 「动态规划」-数位dp专题
数位dp,今天学长讲的稍玄学,课下花了一会时间仔细看了一下,发现板子是挺好理解的,就在这里写一些: 数位dp主要就是搞一些在区间中,区间内的数满足题目中的条件的数的个数的一类题,题目一般都好理解,这时 ...
- 有关动态规划(主要是数位DP)的一点讨论
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法.20世纪50年代初美国数学家在研究多阶段决策过程的优化问题时, ...
- [kuangbin带你飞]专题十五 数位DP
ID Origin Title 62 / 175 Problem A CodeForces 55D Beautiful numbers 30 / 84 Problem B HD ...
- 数位DP专题
这周开始刷数位DP,在网上找到一份神级数位DP模板,做起题目来爽歪歪. http://www.cnblogs.com/jffifa/archive/2012/08/17/2644847.html in ...
- 动态规划——数位dp
通过先前在<动态规划——背包问题>中关于动态规划的初探,我们其实可以看到,动态规划其实不是像凸包.扩展欧几里得等是具体的算法,而是一种在解决问题中决策的思想.在不同的题目中,我们都需要根据 ...
- 专题训练之数位DP
推荐以下一篇博客:https://blog.csdn.net/wust_zzwh/article/details/52100392 1.(HDOJ2089)http://acm.hdu.edu.cn/ ...
随机推荐
- Codeforces Round #523 (Div. 2)D(二分,多重集)
#include<bits/stdc++.h>using namespace std;const long long N=1e5+5;const long long MOD=1e9+7;l ...
- ERROR 1010 (HY000): Error dropping database (can't rmdir './nsd', errno: 39)
在删除数据库的时候报标题所示错误 mysql> drop database test; ERROR 1010 (HY000): Error dropping database (can't rm ...
- UML——再回首
概述 在画图的过程中,发现自己还是有好多不懂的地方,对于四大关系理解的不是特别透彻,所以画图的过程中总是"剪不断,理还乱!"再一次整理四大关系,再回首必然丰收~~~ 1.实 ...
- c/c++/c# 快速计算 Cumulative Normal Distribution 正态累积函数CDF
链接: http://stackoverflow.com/questions/2328258/cumulative-normal-distribution-function-in-c-c http:/ ...
- JavaWeb:Servlet技术
JavaWeb:Servlet技术 快速开始 Servlet是什么 Java Servlet 是运行在 Web 服务器或应用服务器上的程序,它是作为来自 Web 浏览器或其他 HTTP 客户端的请求和 ...
- [转]SE43 修改SAP标准菜单、登陆界面、背景图片
1.事务码se43 复制标准菜单S000 到 ZS000 2.按实际需要修改 ZS000 3.在事务码SSM2中用ZS000 代替 S000 4.注销后重新登陆 o 修改SAP登陆界面(在本博客 ...
- 通过sql语句对MySql数据库的基本操作
一.数据库的基本操作 CREATE DATABASE mybookstore; DROP DATABASE mybookstore; 二.表的基本操作 1.创建表 insert into 表名(字段名 ...
- jsp 文件上传操作
文件上传 1:完成一个文件上传的功能 index.jsp 注意更换form表单的enctype enctype就是encodetype就是编码类型的意思. multipart/form-data是指表 ...
- 上传图片时实时显示功能使用uploadPreview.js
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>添加商品分类</tit ...
- C数据结构与算法-算法复杂度
算法复杂度分为时间复杂度T(n)和空间复杂度F(n) 时间复杂度:也就是执行算法程序所需的时间,与硬件的速度.编程语言的级别.编译器的优化.数据的规模.执行的频度有关,前三个有很大的不确定性,所以衡量 ...