BZOJ4824 [Cqoi2017]老C的键盘 【树形dp】
题目链接
题解
观察出题目中的关系实际上是完全二叉树的父子关系
我们设\(f[i][j]\)为以\(i\)为根的节点在其子树中排名为\(j\)的方案数
转移时,枚举左右子树分别有几个节点比\(i\)小,进行转移
乍一看是\(O(n^3)\)的,但其复杂度分析和某一题很像
就是在根处枚举两个子树大小,实质上就等于枚举任意两点\(lca\),是\(O(n^2)\)的
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 205,maxm = 100005,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL C[maxn][maxn],f[maxn][maxn],siz[maxn],n,typ[maxn];
LL suml[maxn][maxn],sumr[maxn][maxn];
char s[maxn];
void init(){
for (int i = 0; i <= 100; i++){
C[i][0] = C[i][i] = 1;
for (int j = 1; j <= (i >> 1); j++)
C[i][j] = C[i][i - j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
}
}
void dfs(int u){
if (u > n) return;
dfs(ls); dfs(rs);
siz[u] = siz[ls] + 1 + siz[rs];
if (ls > n) f[u][1] = 1;
else if (rs > n){
for (int i = 0; i <= siz[ls]; i++)
if (!typ[ls]) f[u][i + 1] = sumr[ls][i + 1];
else f[u][i + 1] = suml[ls][i];
}
else {
LL t1,t2;
for (int i = 0; i <= siz[ls]; i++){
if (!typ[ls]) t1 = sumr[ls][i + 1];
else t1 = suml[ls][i];
for (int j = 0; j <= siz[rs]; j++){
if (!typ[rs]) t2 = sumr[rs][j + 1];
else t2 = suml[rs][j];
f[u][i + j + 1] = (f[u][i + j + 1] + C[i + j][i] * C[siz[u] - (i + j + 1)][siz[ls] - i] % P * t1 % P * t2 % P) % P;
}
}
}
for (int i = 1; i <= n ; i++) suml[u][i] = (suml[u][i - 1] + f[u][i]) % P;
for (int i = n; i >= 0; i--) sumr[u][i] = (sumr[u][i + 1] + f[u][i]) % P;
}
int main(){
init();
n = read();
scanf("%s",s + 2);
for (int i = 2; i <= n; i++)
typ[i] = s[i] == '<' ? 0 : 1;
dfs(1);
printf("%lld\n",suml[1][n]);
return 0;
}
BZOJ4824 [Cqoi2017]老C的键盘 【树形dp】的更多相关文章
- [BZOJ4824][CQOI2017]老C的键盘(树形DP)
4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 193 Solved: 149[Submit][Statu ...
- [BZOJ4824][Cqoi2017]老C的键盘 树形dp+组合数
4824: [Cqoi2017]老C的键盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 218 Solved: 171[Submit][Statu ...
- BZOJ 4824 [Cqoi2017]老C的键盘 ——树形DP
每一个限制条件相当于一条有向边, 忽略边的方向,就成了一道裸的树形DP题 同BZOJ3167 唯一的区别就是这个$O(n^3)$能过 #include <map> #include < ...
- [bzoj4824][Cqoi2017]老C的键盘
来自FallDream的博客,未经允许,请勿转载,谢谢. 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序在某种 ...
- [CQOI2017]老C的键盘
[CQOI2017]老C的键盘 题目描述 额,网上题解好像都是用的一大堆组合数,然而我懒得推公式. 设\(f[i][j]\)表示以\(i\)为根,且\(i\)的权值为\(j\)的方案数. 转移: \[ ...
- [bzoj4824][洛谷P3757][Cqoi2017]老C的键盘
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 Q 也 ...
- bzoj 4824: [Cqoi2017]老C的键盘
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...
- Luogu P3757 [CQOI2017]老C的键盘
题目描述 老C的键盘 题解 显然对于每个数 x 都有唯一对应的 \(x/2\) , 然而对于每个数 x 却可以成为 \(x*2\) 和 \(x*2+1\) 的对应数 根据这一特性想到了啥??? 感谢l ...
- 洛谷 P3757 [CQOI2017]老C的键盘
题面 luogu 题解 其实就是一颗二叉树 我们假设左儿子小于根,右儿子大于根 考虑树形\(dp\) \(f[u][i]\)表示以\(u\)为根的子树,\(u\)为第\(i\)小 那么考虑子树合并 其 ...
随机推荐
- 远程桌面连接失败,提示CredSSP加密Oracel修正问题解决
今天远程桌面的时候失败了,出现以下提示 于是上网找解决办法,经过测试,该方法是可行的. 首先,在控制台中输入regedit,打开注册表
- const用法总结(通俗易懂)
const的意思可以概括为 “一个不能被改变的普通变量” ,使得const在一定程度上提高程序的安全性和可靠性. const的几种情况: 1. const的普通用法 int const size: c ...
- Python学习之编程基础
学习Python之前首先我们要了解Python是什么? question 1:Python是什么? answer:Python是一门编程语言.(什么是编程语言?) 语言:语言是不同个体之间沟通的介质. ...
- linux通用GPIO驱动,写GPIO文件不立即生效问题解决
Linux开发平台实现了通用GPIO的驱动,用户通过,SHell或者系统调用能控制GPIO的输出和读取其输入值.其属性文件均在/sys/class/gpio/目录下,该目录下有export和unexp ...
- [CQOI2007]余数求和 (分块+数学
题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如G(10, 5)=5 ...
- [CodeForces948D]Perfect Security(01字典树)
Description 题目链接 Solution 01字典树模板题,删除操作用个数组记录下就行了 Code #include <cstdio> #include <algorith ...
- TouTiao开源项目 分析笔记15 新闻详情之两种类型的实现
1.预览效果 1.1.首先看一下需要实现的效果. 第一种,文字类型新闻. 第二种,图片类型新闻. 1.2.在NewsArticleTextViewBinder中设置了点击事件 RxView.click ...
- 模块hashlib和logging
Python的hashlib提供了常见的摘要算法MD5. 我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值: import hashlib md5=hashlib.md5() md5.upd ...
- 【转】正则表达式速查表(http://www.jb51.net/shouce/jquery1.82/regexp.html)
正则表达式速查表 字符 描述 \ 将下一个字符标记为一个特殊字符.或一个原义字符.或一个向后引用.或一个八进制转义符.例如,“n”匹配字符“n”.“\n”匹配一个换行符.串行“\\”匹配“\”而“\( ...
- Android 支付宝H5 没有回调
今天测试反馈问题,说,手机上没有安装支付宝的,调用支付宝支付之后,没有回调.不提示成功也不提示失败. 我自己试了半天也都是没有问题 .后来终于可以试出来了. 发现原来是,清单里面注册的Activity ...