礼物
  • 题意:

    • 求$$C(n,m)\ %\ p$$
    • \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k]{p_i}^{c_i}\le 10^5.\)
  • 注意到若$$p=\prod_{i=1}{k}{p_i}{c_i},则\forall i\in [1..k]{p_i}^{c_i}\le 10^5.$$

  • 于是有一个经典套路就是,求出\(k\)组\(A_i=C(n,m)\% {p_i}^{c_i}\),最后用中国剩余定理求解.

  • 注意到若中国剩余定理求出一组特解为\(Ans\),则\((Ans+kp)\)为其通解.

  • 由于\(p\)不保证为质数,所以我们需要对\(C(n,m)\)拆式子,然后把含\(p\)的与不含\(p\)的质因子分开算.

  • 于是问题转化为求\(n!\),我们以\(p^c\)个数为一组,不难发现,把含\(p\)质因子的数筛出去后每一组的乘积在模\(p^c\)意义下是一样的.

  • 这个证明很显然,因为每一组都可以表示为\((k*p^c+1,k*p^c+2,\cdots,(k+1)*p^c)\).

  • 于是发现含有\(p\)的质因子又是一个阶乘.

  • 所以分治处理.

  • 注意这里对于模数非质数的求逆元方法:

  • 我们要求\(x\)关于\(m\)的逆元,实质上就是\(ax + km = 1\)的解.

  • 然后我们可以求得这个\(a\),用拓展\(gcd\)即可.

ll Exgcd(L a, L b, L &x, L &y) {
if (!b) { x = 1, y = 0; return a; }
L d = Exgcd(b, a % b, x, y), z = x;
x = y, y = z - y * (a / b); return d;
} //拓欧 ll CALC(L st, L en, L k) { L s = 1;
F(i, st, en) if (i % sta[k].p) s = (s * i) % sta[k].up;
return s;
} ll calc(L n, L k) {
if (n <= sta[k].p) return CALC(1, n, k);
L k1 = calc(n / sta[k].p, k); //分治求解
L k2 = CALC(1, min(sta[k].up - 1, n), k); //每sta[k].up个分一组,这是一个循环节
if (n > sta[k].up) {
L k3 = CALC((n / sta[k].up) * sta[k].up + 1, n, k); //计算循环节余剩的
return (k1 * ksm(k2, n / sta[k].up, sta[k].up) * k3) % sta[k].up;
}
else return (k1 * k2) % sta[k].up;
} ll count(L n, L p) { return n < p ? 0 : n / p + count(n / p, p); } //分治计算含p质因子个数 ll Inv(L t, L p) {
L d, x, y; d = Exgcd(t, p, x, y); //求逆元
return (x % p + p) % p;
} ll C(L x, L y) {
L ss = 0;
F(i, 1, cnt) {
L s1 = calc(x, i), s2 = (calc(y, i) * calc(x - y, i)) % sta[i].up, tot; //计算x!/y!(x-y)!
s1 = s1 * Inv(s2, sta[i].up) % sta[i].up; //与sta[i].up互质,所以用拓欧求逆元.
tot = count(x, sta[i].p) - count(y, sta[i].p) - count(x - y, sta[i].p); //计算含p质因子个数
s1 = s1 * ksm(sta[i].p, tot, sta[i].up) % sta[i].up; //快速幂一下
G[i] = {s1, sta[i].up}; //一组方程
}
F(i, 1, cnt) {
L Mi = p / sta[i].up;
ss = (ss + ((G[i].a * Mi % p) * Inv(Mi, G[i].mo))) % p; //构造一组特解
}
return ss == 0 ? p : (ss % p + p) % p; //通解
}
  • 此题是很好的思维+数论模板题.

礼物(中国剩余定理+拓展gcd求逆元+分治=拓展Lucus)的更多相关文章

  1. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  2. 扩展gcd求逆元

    当模数为素数时可以用费马小定理求逆元. 模数为合数时,费马小定理大部分情况下失效,此时,只有与模数互质的数才有逆元(满足费马小定理的合数叫伪素数,讨论这个问题就需要新开一个博客了). (对于一个数n, ...

  3. 拓展gcd求不定方程通解

    void gcd(LL a,LL b,LL &d,LL &x,LL &y){ ){d=a;x=;y=;return;} gcd(b,a%b,d,x,y); int t=x; x ...

  4. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  5. BZOJ2219数论之神——BSGS+中国剩余定理+原根与指标+欧拉定理+exgcd

    题目描述 在ACM_DIY群中,有一位叫做“傻崽”的同学由于在数论方面造诣很高,被称为数轮之神!对于任何数论问题,他都能瞬间秒杀!一天他在群里面问了一个神题: 对于给定的3个非负整数 A,B,K 求出 ...

  6. 扩展中国剩余定理(扩展CRT)详解

    今天在$xsy$上翻题翻到了一道扩展CRT的题,就顺便重温了下(扩展CRT模板也在里面) 中国剩余定理是用于求一个最小的$x$,满足$x\equiv c_i \pmod{m_i}$. 正常的$CRT$ ...

  7. codeforces 492E. Vanya and Field(exgcd求逆元)

    题目链接:codeforces 492e vanya and field 留个扩展gcd求逆元的板子. 设i,j为每颗苹果树的位置,因为gcd(n,dx) = 1,gcd(n,dy) = 1,所以当走 ...

  8. gcd模板(欧几里得与扩展欧几里得、拓展欧几里得求逆元)

    gcd(欧几里得算法辗转相除法): gcd ( a , b )= d : 即 d = gcd ( a , b ) = gcd ( b , a mod b ):以此式进行递归即可. 之前一直愚蠢地以为辗 ...

  9. 模板—中国剩余定理+拓展GCD

    int exgcd(int a,int b,int &x,int &y) { ) { x=,y=; return a; } int gcd=exgcd(b,a%b,x,y); int ...

随机推荐

  1. dotnet core 入门命令

    官方资料: https://docs.microsoft.com/zh-cn/dotnet/core/tools/dotnet-restore?tabs=netcore2x 常规 项目引用 NuGet ...

  2. 会话固定攻击 - yxcms session固定漏洞

    目录 会话固定攻击 e.g. yxcms session固定攻击 分析 了解更多 会话固定攻击 Session fixation attack(会话固定攻击)是利用服务器的session不变机制,借他 ...

  3. MongoDB 如何实现备份压缩

    背景及原理 数据库的备份是灾难恢复的最后一道屏障,不管什么类型的数据库都需要设置数据库备份,MongoDB也不例外.MongoDB 3.0 后 ,数据库可以采用Wiredtiger存储引擎后(3.2 ...

  4. Oracle获取表字段名,字段类型,字段长度,注释

    SELECT b.comments as 注释, a.column_name as 列名, a.data_type || '(' || a.data_length || ')' as 数据类型, a. ...

  5. mysql 的链接字符

    mysql的链接字符: driver =com.mysql.cj.jdbc.Driverurl =jdbc:mysql://localhost:3306/oa?serverTimezone=Asia/ ...

  6. 【Teradata】使用arcmain进行不落地数据迁移(管道)

    1.备份脚本准备 //脚本bak_ds.arc .logon 192.168.253.222/sysdba,learning1510; archive data tables(DS) ,release ...

  7. No FileSystem for scheme: hdfs问题

    通过FileSystem.get(conf)初始化的时候,要通过静态加载来实现,其加载类的方法代码如下: private static FileSystem createFileSystem(URI ...

  8. Spark1.6之后为何使用Netty通信框架替代Akka

    解决方案: 一直以来,基于Akka实现的RPC通信框架是Spark引以为豪的主要特性,也是与Hadoop等分布式计算框架对比过程中一大亮点. 但是时代和技术都在演化,从Spark1.3.1版本开始,为 ...

  9. 贷款资讯类APP、贷款资讯网站廉价卖,需要的进来看看

    [app介绍]卡贷资讯app为您提供信用卡申请攻略及借款资讯以及贷款口子,让你借钱借款路上不再愁.[功能特点]1.资讯:聚合各种贷款资讯知识,掌握核心信用卡申请攻略,借款借钱不亏,亦不被骗:2.工具: ...

  10. pytorch实现性别检测

    卷积神经网络的训练是耗时的,很多场合不可能每次都从随机初始化参数开始训练网络.   1.训练 pytorch中自带几种常用的深度学习网络预训练模型,如VGG.ResNet等.往往为了加快学习的进度,在 ...