【XSY2990】树 组合数学 容斥
题目描述
不过只用求一项。
\(n,k\leq {10}^7\)
题解
不难发现一棵 \(n\) 个叶子的树唯一对应了一个长度为 \(2n-2\) 的括号序列。
往左儿子走对应加一个左括号,退到上一个只有左儿子的点,往右儿子走对应加一个右括号,那么合法的树一定满足:每一个前缀中左括号数量 \(-\) 右括号数量 \(<m-1\)。
求括号序列个数有一种容斥做法:把左括号视为 \(1\),把右括号视为 \(-1\)。用总方案数减掉走到 \(-1\) 的方案数
每一个走到 \(-1\) 的方案在走第一次走到 \(-1\) 后把后面的括号取反,对应一个结尾走到 \(-2\) 的方案数。
这道题要求不能走到 \(m-1\),那么还要减掉结尾走到 \(2m-2\) 的方案数。
但是既走到 \(-1\) 又走到到 \(2m-2\) 的方案会被减掉两次,所以要加上结尾走到 \(2m\) 的方案数和结尾走到 \(-2m\) 的方案数。
然后又要减掉 \(0\to -1\to m-1\to -1\) 的方案数和 \(0\to m-1\to -1\to m-1\) 的方案数。
以此类推。
时间复杂度:\(O(n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const ll p=998244353;
const int N=10000010;
int n,m;
ll fp(ll a,ll b)
{
ll s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
int ifac[2*N];
ll binom(int x,int y)
{
return x>=y&&y>=0?(ll)ifac[y]*ifac[x-y]%p:0;
}
int main()
{
open("c");
scanf("%d%d",&n,&m);
n--;
ll s=1;
for(int i=1;i<=2*n;i++)
s=s*i%p;
ifac[2*n]=fp(s,p-2);
for(int i=2*n;i>=1;i--)
ifac[i-1]=(ll)ifac[i]*i%p;
ll ans=binom(2*n,n);
for(int i=0;i<n;i+=m)
{
ans-=binom(2*n,n+i+1);
ans-=binom(2*n,n+i+m-1);
ans+=2*binom(2*n,n+i+m);
}
ans=(ans%p*s%p+p)%p;
printf("%lld\n",ans);
return 0;
}
【XSY2990】树 组合数学 容斥的更多相关文章
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- HDU 6397 Character Encoding (组合数学 + 容斥)
题意: 析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式. 其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x ...
- 【bzoj4596】[Shoi2016]黑暗前的幻想乡 (矩阵树定理+容斥)
Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类)博丽灵梦和八云紫等人整日高谈所有妖怪平等 ...
- [CSP-S模拟测试]:多维网格(组合数学+容斥)
题目传送门(内部题138) 输入格式 输入数据第一行为两个整数$d,n$. 第二行$d$个非负整数$a_1,a_2,...,a_d$. 接下来$n$行,每行$d$个整数,表示一个坏点的坐标.数 ...
- [BZOJ2839]:集合计数(组合数学+容斥)
题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...
- 2019.02.11 bzoj4767: 两双手(组合数学+容斥dp)
传送门 题意简述:你要从(0,0)(0,0)(0,0)走到(ex,ey)(ex,ey)(ex,ey),每次可以从(x,y)(x,y)(x,y)走到(x+ax,y+ay)(x+ax,y+ay)(x+ax ...
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- HDU 6397 组合数学+容斥 母函数
Character Encoding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Oth ...
- CF451E Devu and Flowers (组合数学+容斥)
题目大意:给你$n$个箱子,每个箱子里有$a_{i}$个花,你最多取$s$个花,求所有取花的方案,$n<=20$,$s<=1e14$,$a_{i}<=1e12$ 容斥入门题目 把取花 ...
随机推荐
- arcgis api 3.x for js 入门开发系列十二地图打印GP服务(附源码下载)
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- 39.Odoo产品分析 (四) – 工具板块(8) – 生产力(1)
查看Odoo产品分析系列--目录 生产力相当于一个即时贴或便签.用便签或待办事项处理个人的任务. 安装生产力模块,得到"便签"主菜单: 创建一个便签,该表单对应note.not ...
- 原生Js交互之DSBridge
文章链接:https://mp.weixin.qq.com/s/Iqd0dKM-ZW4UwkIgSTnvYg 在上一篇文章「android 记一次富文本加载之路」中 介绍了关于android加载富文本 ...
- C#获得指定目录床架时间、更新时间和最后访问时间等信息的代码
将做工程过程常用的内容片段备份一次,下面的内容内容是关于C#获得指定目录床架时间.更新时间和最后访问时间等信息的内容,希望能对小伙伴们也有用. using System;using System.IO ...
- [20190402]对比_mutex_wait_scheme不同模式cpu消耗.txt
[20190402]对比_mutex_wait_scheme不同模式cpu消耗.txt --//前几天做了sql语句在mutexes上的探究.今天对比不同_mutex_wait_scheme模式cpu ...
- nysql报错1136
报错信息:> 1136 - Column count doesn't match value count at row 1 代码:insert into class(caption) value ...
- 面向对象_del
老师的博客http://www.cnblogs.com/Eva-J/articles/7351812.html#_label7 内置的方法有很多不一定全都在object中 #python3中,所有类都 ...
- org.springframework.web.context.support.XmlWebApplicationContext.refresh Exception encountered during context initialization - cancelling refresh attempt: org.springframework.beans.factory.BeanCreatio
错误异常: 11-Apr-2019 18:07:14.006 警告 [RMI TCP Connection(5)-127.0.0.1] org.springframework.web.context. ...
- Linux运维基础
一.服务器硬件 二.Linux的发展史 三.Linux的系统安装和配置 四.Xshell的安装和优化 五.远程连接排错 六.Linux命令初识 七.Linux系统初识与优化 八.Linux目录结构 九 ...
- 字符串匹配KMP算法详解
1. 引言 以前看过很多次KMP算法,一直觉得很有用,但都没有搞明白,一方面是网上很少有比较详细的通俗易懂的讲解,另一方面也怪自己没有沉下心来研究.最近在leetcode上又遇见字符串匹配的题目,以此 ...