Portal

  

  传送门

  

  

  

Solution

  

  显然的是,每一个圆的影子,就是从树上的圆按光线方向平移至地面的圆。至于两个圆之间的连接部分,则是每两个在树上相邻的圆的,对应的影子圆的,公切线围起来的部分,如下图所示

  



  

  所以我们现在要求每两个在原树上相邻的圆的影子圆构成的图形的并。只看\(x\)轴上半部分,可以把它想象成一个函数,求单点值是\(O(n)\)的,我们不妨用辛普森积分来解决......

  

  相邻圆的公切线和x轴的夹角是可以求出来的,然后就能解出公切线的解析式,以及有效范围。注意这些东西要预处理!千万不要放在求值函数里面。\(EPS\)大约设置到\(10^{-7}\)才不会出错,效率也相对比较高。

  

  

  

Code

  

#include <cstdio>
#include <cmath>
using namespace std;
const int N=505;
const double EPS=1e-7,INF=1e10,PI=3.14159265358979323846;
int n,sum;
double alpha,h[N],p[N],r[N];
double k[N],b[N],lx[N],rx[N];
bool exist[N];
inline double max(double x,double y){return x>y?x:y;}
inline double min(double x,double y){return x<y?x:y;}
inline void swap(int &x,int &y){x^=y^=x^=y;}
inline bool in(int a,int b){
if(r[a]>r[b]) swap(a,b);
return p[a]+r[a]-EPS<=p[b]+r[b]&&p[a]-r[a]+EPS>=p[b]-r[b];
}
double calc(int a,int b,double &k,double &bb,double &xl,double &xr){
if(p[a]>p[b]) swap(a,b);
double beta=asin((r[b]-r[a])/(p[b]-p[a]));
k=tan(beta);
double tx;
if(r[a]>=r[b]){
beta=-beta;
tx=p[b]+r[b]/sin(beta);
bb=-k*tx;
xr=tx-(cos(beta)*(r[b]/tan(beta)));
xl=tx-(cos(beta)*(r[a]/tan(beta)));
}
else{
tx=p[a]-r[a]/sin(beta);
bb=-k*tx;
xl=tx+(cos(beta)*(r[a]/tan(beta)));
xr=tx+(cos(beta)*(r[b]/tan(beta)));
}
}
double f(double x){
double res=0;
for(int i=1;i<=n;i++)
if(fabs(x-p[i])<=r[i])
res=max(res,sqrt(r[i]*r[i]-fabs(x-p[i])*fabs(x-p[i])));
for(int i=1;i<n;i++)
if(exist[i])
if(lx[i]<=x+EPS&&x-EPS<=rx[i])
res=max(res,k[i]*x+b[i]);
return res;
}
double simpson(double l,double r){
double mid=(l+r)*0.5;
return (f(l)+4*f(mid)+f(r))*(r-l)/6;
}
double solve(double l,double r){
double mid=(l+r)/2,lmid=(l+mid)/2,rmid=(mid+r)/2;
double val=simpson(l,r);
if(fabs(val-(simpson(l,mid)+simpson(mid,r)))<EPS) return val;
return solve(l,mid)+solve(mid,r);
}
int main(){
scanf("%d%lf",&n,&alpha);
n++;
for(int i=1;i<=n;i++){
scanf("%lf",h+i);
h[i]+=h[i-1];
p[i]=h[i]/tan(alpha);
}
for(int i=1;i<n;i++) scanf("%lf",r+i);
double xl=INF,xr=-INF;
for(int i=1;i<=n;i++){
xl=min(xl,p[i]-r[i]);
xr=max(xr,p[i]+r[i]);
}
for(int i=1;i<n;i++){
exist[i]=!in(i,i+1);
if(exist[i])
calc(i,i+1,k[i],b[i],lx[i],rx[i]);
}
printf("%.2lf\n",solve(xl,xr)*2);
return 0;
}

【BZOJ1502】【NOI2005】月下柠檬树的更多相关文章

  1. BZOJ1502: [NOI2005]月下柠檬树

    Simpson法相当好用啊!神奇的骗分算法! /************************************************************** Problem: 1502 ...

  2. [日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法

    关于自适应Simpson法的介绍可以去看我的另一篇blog http://www.lydsy.com/JudgeOnline/problem.php?id=1502 题意:空间里圆心在同一直线上且底面 ...

  3. 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分

    [BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...

  4. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  5. 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1017  Solved: 562[Submit][Status] ...

  6. [NOI2005]月下柠檬树[计算几何(simpson)]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1169  Solved: 626[Submit][Status] ...

  7. [NOI2005]月下柠檬树

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

  8. 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法

    LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...

  9. 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...

  10. BZOJ1502:[NOI2005]月下柠檬树——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1502 https://www.luogu.org/problemnew/show/P4207 李哲 ...

随机推荐

  1. Unity扩展编辑器四

    Inspector视图中的get/set使用 get  set使用起来很方便,但编辑时,在Inspector视图中问题就来了,因为get/set的属性即使是public了,但是在Inspector视图 ...

  2. 从零开始的Python学习Episode 18——面向对象(1)

    类与对象 类即类别.种类,是面向对象设计最重要的概念,对象是特征与技能的结合体,而类则是一系列对象相似的特征与技能的结合体. 类的定义 class 类名: 属性1 属性2 def 方法(self,ar ...

  3. Annotation 使用备忘

    title: Annotation 使用备忘 date: 2016-11-16 23:16:43 tags: [Annotation] categories: [Programming,Java] - ...

  4. wifi,Android渗透之arp欺骗

    查看自己wifi ip段 查看有哪些用户连接了此wifi,下图标记处为我的测试机(华为) 攻击开始,如果开启了arp防火墙,就会有提示 开启图片捕获

  5. Ipython使用

    目录 Ipython说明 Ipython使用 安装使用 TAB键自动补全 内省(?命令) 执行系统命令(!) 与操作系统交互 %run命令执行文件代码 %paste %cpaste命令执行剪贴板代码 ...

  6. CocoaPods :为iOS程序提供依赖管理的工具(yoowei)

    修改于:2016.11.18   2017.1.10  2019.01.31 CocoaPods 源码 : https://github.com/CocoaPods/CocoaPods CocoaPo ...

  7. 敏捷开发与XP实践

    北京电子科技学院(BESTI) 实  验  报  告 课程: Java        班级:1352          姓名:黄伟业         学号:20135215 成绩:           ...

  8. 计算机网络的服务质量(QoS)

    QoS入门,为了进一步学习DPDK上的QoS <计算机网络的服务质量(QoS)> 林闯,单志广,任丰原 著 Background Internet的传统分组交换网络是面向非实时数据通信而设 ...

  9. 结对项目:四则运算web

    1)Coding.Net项目地址 https://git.coding.net/DandelionClaw/WEB_Calculator.git 注:本项目为web端,并且需要连接SQL Server ...

  10. typedef struct bit0 : 1

    这句话定义了一个位域,bit0是该位域的域名,而且bit0只占用一个位.位域是指信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.为了节省存储空间,并使处理简便,C语言提供了一种 ...