【BZOJ1502】【NOI2005】月下柠檬树
Portal
Solution
显然的是,每一个圆的影子,就是从树上的圆按光线方向平移至地面的圆。至于两个圆之间的连接部分,则是每两个在树上相邻的圆的,对应的影子圆的,公切线围起来的部分,如下图所示
所以我们现在要求每两个在原树上相邻的圆的影子圆构成的图形的并。只看\(x\)轴上半部分,可以把它想象成一个函数,求单点值是\(O(n)\)的,我们不妨用辛普森积分来解决......
相邻圆的公切线和x轴的夹角是可以求出来的,然后就能解出公切线的解析式,以及有效范围。注意这些东西要预处理!千万不要放在求值函数里面。\(EPS\)大约设置到\(10^{-7}\)才不会出错,效率也相对比较高。
Code
#include <cstdio>
#include <cmath>
using namespace std;
const int N=505;
const double EPS=1e-7,INF=1e10,PI=3.14159265358979323846;
int n,sum;
double alpha,h[N],p[N],r[N];
double k[N],b[N],lx[N],rx[N];
bool exist[N];
inline double max(double x,double y){return x>y?x:y;}
inline double min(double x,double y){return x<y?x:y;}
inline void swap(int &x,int &y){x^=y^=x^=y;}
inline bool in(int a,int b){
if(r[a]>r[b]) swap(a,b);
return p[a]+r[a]-EPS<=p[b]+r[b]&&p[a]-r[a]+EPS>=p[b]-r[b];
}
double calc(int a,int b,double &k,double &bb,double &xl,double &xr){
if(p[a]>p[b]) swap(a,b);
double beta=asin((r[b]-r[a])/(p[b]-p[a]));
k=tan(beta);
double tx;
if(r[a]>=r[b]){
beta=-beta;
tx=p[b]+r[b]/sin(beta);
bb=-k*tx;
xr=tx-(cos(beta)*(r[b]/tan(beta)));
xl=tx-(cos(beta)*(r[a]/tan(beta)));
}
else{
tx=p[a]-r[a]/sin(beta);
bb=-k*tx;
xl=tx+(cos(beta)*(r[a]/tan(beta)));
xr=tx+(cos(beta)*(r[b]/tan(beta)));
}
}
double f(double x){
double res=0;
for(int i=1;i<=n;i++)
if(fabs(x-p[i])<=r[i])
res=max(res,sqrt(r[i]*r[i]-fabs(x-p[i])*fabs(x-p[i])));
for(int i=1;i<n;i++)
if(exist[i])
if(lx[i]<=x+EPS&&x-EPS<=rx[i])
res=max(res,k[i]*x+b[i]);
return res;
}
double simpson(double l,double r){
double mid=(l+r)*0.5;
return (f(l)+4*f(mid)+f(r))*(r-l)/6;
}
double solve(double l,double r){
double mid=(l+r)/2,lmid=(l+mid)/2,rmid=(mid+r)/2;
double val=simpson(l,r);
if(fabs(val-(simpson(l,mid)+simpson(mid,r)))<EPS) return val;
return solve(l,mid)+solve(mid,r);
}
int main(){
scanf("%d%lf",&n,&alpha);
n++;
for(int i=1;i<=n;i++){
scanf("%lf",h+i);
h[i]+=h[i-1];
p[i]=h[i]/tan(alpha);
}
for(int i=1;i<n;i++) scanf("%lf",r+i);
double xl=INF,xr=-INF;
for(int i=1;i<=n;i++){
xl=min(xl,p[i]-r[i]);
xr=max(xr,p[i]+r[i]);
}
for(int i=1;i<n;i++){
exist[i]=!in(i,i+1);
if(exist[i])
calc(i,i+1,k[i],b[i],lx[i],rx[i]);
}
printf("%.2lf\n",solve(xl,xr)*2);
return 0;
}
【BZOJ1502】【NOI2005】月下柠檬树的更多相关文章
- BZOJ1502: [NOI2005]月下柠檬树
Simpson法相当好用啊!神奇的骗分算法! /************************************************************** Problem: 1502 ...
- [日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法
关于自适应Simpson法的介绍可以去看我的另一篇blog http://www.lydsy.com/JudgeOnline/problem.php?id=1502 题意:空间里圆心在同一直线上且底面 ...
- 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分
[BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...
- BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1070 Solved: 596[Submit][Status] ...
- 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1017 Solved: 562[Submit][Status] ...
- [NOI2005]月下柠檬树[计算几何(simpson)]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1169 Solved: 626[Submit][Status] ...
- [NOI2005]月下柠檬树
题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Probl ...
- 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法
LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...
- 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...
- BZOJ1502:[NOI2005]月下柠檬树——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1502 https://www.luogu.org/problemnew/show/P4207 李哲 ...
随机推荐
- junit测试类防止事务回滚-工作心得
本随笔文章,由个人博客(鸟不拉屎)转移至博客园 发布时间: 2018 年 12 月 06 日 原地址:https://niaobulashi.com/archives/junit-test-rollb ...
- 【总结】Java面试题
部分转自 https://blog.csdn.net/junchi_/article/details/79754032 一.String特性.StringBuffer 和 StringBuilder ...
- [T-ARA][느낌 아니까][懂得那份感觉]
歌词来源:http://music.163.com/#/song?id=27808771 作曲 : 박덕상/박현중 [作曲 : p/bag-ddeog-ssang-/p/ba-Kyeon-c/jung ...
- Python基础_可迭代的/迭代器/生成器
介绍 可迭代的:内部实现了__iter__方法 迭代器:内部实现了__iter__,__next__方法 生成器:yield,yield from 使用 __iter__() __next__() _ ...
- 调试存储过程:ORA-0131 Insufficient privileges
http://www.cnblogs.com/empty01/p/5568250.html
- srTCM和trTCM介绍
本文是用于QoS Meter功能的算法的RFC的阅读笔记.DPDK的QoS_meter示例程序用的就是这个算法. srTCM srTCM的英文全称是Single Rate Three Color Ma ...
- Internet History, Technology and Security (Week8)
Week 8 This week we start two weeks of Internet Security. It is a little technical but don't worry - ...
- C#编程之神奇程序找数
C#编程之神奇程序找数 问题1:这个程序要找的是符合什么条件的数? 问题2:这样的数存在么?符合这一条件的最小的数是什么? 问题3:在电脑上运行这一程序,你估计多长时间才能输出第一个结果?时间精确到分 ...
- 小学四则运算练习(JAVA编写)
源码在Github的仓库主页链接地址:https://github.com/rucr9/rucr 看到这个题目,大概很多人会发出“切,这也太简单了吧!有必要小题大做?”的感叹!是的,仅仅作为一道数学运 ...
- modify headers插件的使用
Modity headers是firefox浏览器的一个插件,作用是改变http请求的IP地址 (一)在firefox中添加该插件 步骤一:打开firefox浏览器,打开地址: https://add ...