已知数列\(\{x_n\}\)满足\[x_{n+1}=\left(\dfrac 2{n^2}+\dfrac 3n+1\right)x_n+n+1,n\in\mathbf N^*,\]且\(x_1=3\),求数列\(\{x_n\}\)的通项公式.

解答:
根据题意,有\[x_{n+1}=\dfrac{(n+1)(n+2)}{n^2}x_n+n+1,\]于是\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{(n+1)(n+2)},\] 进而可得\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}+\dfrac{1}{n+2}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1},\] 因此\[\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1}=\dfrac{x_{n-1}}{(n-1)^2\cdot n}+\dfrac{1}{n}=\cdots =\dfrac{x_1}{2}+\dfrac 12=2,\]所以\(x_n=n^2(2n+1),n\in\mathbf N^*\).
评:这里除去的这一项\((n+1)^2(n+2)\)是由常数变易法得来的.

MT【129】常数变易法的更多相关文章

  1. MT【316】常数变易法

    已知数列$\{a_n\}$满足$a_1=0,a_{n+1}=\dfrac{n+2}{n}a_n+1$,求$a_n$ 解答:$\dfrac{a_{n+1}}{n(n+1)}=\dfrac{a_n}{n( ...

  2. Android 4.4 Kitkat Phone工作流程浅析(七)__来电(MT)响铃流程

    本文来自http://blog.csdn.net/yihongyuelan 转载请务必注明出处 本文代码以MTK平台Android 4.4为分析对象,与Google原生AOSP有些许差异,请读者知悉. ...

  3. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  4. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  5. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

  7. DCMTK3.6.0 (MT支持库)安装 完整说明

    环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcm ...

  8. visual studio运行时库MT、MTd、MD、MDd的研究(转载)

    转载:http://blog.csdn.net/ybxuwei/article/details/9095067 转载:http://blog.sina.com.cn/s/blog_624485f701 ...

  9. 关于电脑玩MT以及多开的方法

    方法是转的别人的首先感谢原创者!!上四开屏幕截图,因为小伙伴需要8张卡,所以我四个四个一起练.8开我的电脑估计都有压力,五开六开可能没问题,但是为了方便就四开,练完四个再练四个.图接下来说下多开模拟器 ...

随机推荐

  1. Activity启动过程中获取组件宽高的五种方式

    第一种:(重写Activity的onWindowFocusChanged方法) /** * 重写Acitivty的onWindowFocusChanged方法 */ @Override public ...

  2. 一个IT男的表白

    致BCD6 CEC0 C3F4 转一轮肩胛骨 倒一杯铁观音 白驹过隙,倏忽两秋 远方有希望和梦想 有火车.微信美颜视频聊天和碧根果 有你的支持 如果身旁没有你 生活无趣失去动力 就像python失去类 ...

  3. DICOM 协议学习笔记之 What is DICOM

    什么是DICOM? Dicom (Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052 ...

  4. webpack构建Vue项目引入jQ时发生“'$' is defined but never used”的处理

    今天公司需要新建个数据后台,就按照查到的方法构建了Vue框架的项目,引入jQ.bootstrap时,按照在线方法配置,发现 main.js 里的引用jQ一直显示红标,没多想,在按照网上配置完后,npm ...

  5. 将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository The server may be unreachable or the URL may be incorrect

    将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository  The server may be unreachabl ...

  6. 暑假作业app博客

    一.光照传感器 界面 简介 运用了传感器类,通过手机的感应区根据当时的光照强度显示出数据. 核心代码 protected void onCreate(Bundle savedInstanceState ...

  7. 2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-最后阶段

    2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-最后阶段 最后的一周,时间越来越紧张,因为之前的拖沓和一些事情的耽误,导致了如今的紧张,这一周应该是我们小组效率最高 ...

  8. spring冲刺第六天

    昨天编写地图代码,完善地图界面,使其变得美观. 今天把地图界面初步完成,和其他团队成员的成果进行结合,整合人物和地图代码. 遇到的问题:在整合时遇到的问题比较多,今天没有整合成功.

  9. C#编程概述

    一个简单的c#程序 标识符 标识符是一种字符串,用来命名变量.方法.参数和许多后面将要阐述的其他程序结构. 关键字 所有C#关键字都由小写字母组成,但是.NET类型名使用Pascal大小写约定. Ma ...

  10. spring冲刺阶段之团队工作总结

    一.小组成员: 王俊凯(项目经理) 罗林杰(产品负责人) 王逸辉(Master) 罗凯杰 二.任务分配情况 王俊凯:生成题目的代码编写并提出编写意见 罗林杰:负责把按钮和界面内容连接到代码上及主要代码 ...