MT【129】常数变易法
已知数列\(\{x_n\}\)满足\[x_{n+1}=\left(\dfrac 2{n^2}+\dfrac 3n+1\right)x_n+n+1,n\in\mathbf N^*,\]且\(x_1=3\),求数列\(\{x_n\}\)的通项公式.

解答:
根据题意,有\[x_{n+1}=\dfrac{(n+1)(n+2)}{n^2}x_n+n+1,\]于是\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{(n+1)(n+2)},\] 进而可得\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}+\dfrac{1}{n+2}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1},\] 因此\[\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1}=\dfrac{x_{n-1}}{(n-1)^2\cdot n}+\dfrac{1}{n}=\cdots =\dfrac{x_1}{2}+\dfrac 12=2,\]所以\(x_n=n^2(2n+1),n\in\mathbf N^*\).
评:这里除去的这一项\((n+1)^2(n+2)\)是由常数变易法得来的.
MT【129】常数变易法的更多相关文章
- MT【316】常数变易法
已知数列$\{a_n\}$满足$a_1=0,a_{n+1}=\dfrac{n+2}{n}a_n+1$,求$a_n$ 解答:$\dfrac{a_{n+1}}{n(n+1)}=\dfrac{a_n}{n( ...
- Android 4.4 Kitkat Phone工作流程浅析(七)__来电(MT)响铃流程
本文来自http://blog.csdn.net/yihongyuelan 转载请务必注明出处 本文代码以MTK平台Android 4.4为分析对象,与Google原生AOSP有些许差异,请读者知悉. ...
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题
一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1) 打开项目的Property Pages对话框 2) 点击左侧C/C ...
- MT写的对URL操作的两个方法
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- MD(d)、MT(d)编译选项的区别
1.编译选项的位置 以VS2005为例,这样子打开: 1) 打开项目的Property Pages对话框 2) 点击左侧C/C++节 3) 点击Code ...
- DCMTK3.6.0 (MT支持库)安装 完整说明
环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcm ...
- visual studio运行时库MT、MTd、MD、MDd的研究(转载)
转载:http://blog.csdn.net/ybxuwei/article/details/9095067 转载:http://blog.sina.com.cn/s/blog_624485f701 ...
- 关于电脑玩MT以及多开的方法
方法是转的别人的首先感谢原创者!!上四开屏幕截图,因为小伙伴需要8张卡,所以我四个四个一起练.8开我的电脑估计都有压力,五开六开可能没问题,但是为了方便就四开,练完四个再练四个.图接下来说下多开模拟器 ...
随机推荐
- Python之面向对象-反射
一.什么是反射 反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问,检测和修改它本省状态或行为的一种能力(自省).这一概念的提出很快引发了计算机科学领域关于应用反射性的研究.它首先被 ...
- 《spark机器学习 第二版》 蔡立宇 分享 pdf下载
链接:https://pan.baidu.com/s/15Y14eAnfj8zf5mXdixbVeQ 提取码:rkdt
- c++三大概念要分清--重载,隐藏(重定义),覆盖(重写)
重载,隐藏(重定义),覆盖(重写)—这几个名词看着好像很像,不过其实一样都不一样!! 综述: 说明:覆盖中的访问修饰符可以不同是指可以不用显示地用virtual:当访问修饰符改为const或者stat ...
- 2018NOIP爆0记第一弹
初赛篇 选择即王道 迪杰斯特拉那道题的A选项自己yy一下觉得甚是不妥,就没选 就和30分完美选择题擦肩而过. 填空最后一题不太会搞,就跳过了,最后蒙了个512上去...其实还有点接近的... 5分 然 ...
- [转] Unicode字符编码区间表
firebug 打UTF8 字符: var res = ""; for(var i=0x80;i< 0xff ;i++){ res += i.toString(16) + & ...
- tomcat安装及使用详解
常用软件安装及使用目录 资料链接:https://pan.baidu.com/s/1XOUlneFqt-_1tOLSmc-E1g 网盘分享的文件在此 1. Tomcat简介 Tomcat是一个 ...
- 请教JDBC中的thin和OCI的区别\
请教JDBC中的thin和OCI的区别 https://zhidao.baidu.com/question/2267123737573204748.html
- Final发布 -----欢迎来怼团队
欢迎来怼项目小组—Final发布展示 一.小组成员 队长:田继平 成员:葛美义,王伟东,姜珊,邵朔,阚博文 ,李圆圆 二.文案+美工展示 链接:http://www.cnblogs.com/js201 ...
- mybatis之模糊查询SQL
一,MySQL数据库 name like concat('%' , #{name} , '%') 二,Oracle数据库 name like '%' || #{name} || '%'
- Task 4.4二维环形数组求最大子矩阵之和
任务: (1)输入一个二维整形数组,数组里有正数也有负数. (2)二维数组首尾相接,象个一条首尾相接带子一样. (3)数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和. (4)求所有子数 ...