已知数列\(\{x_n\}\)满足\[x_{n+1}=\left(\dfrac 2{n^2}+\dfrac 3n+1\right)x_n+n+1,n\in\mathbf N^*,\]且\(x_1=3\),求数列\(\{x_n\}\)的通项公式.

解答:
根据题意,有\[x_{n+1}=\dfrac{(n+1)(n+2)}{n^2}x_n+n+1,\]于是\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{(n+1)(n+2)},\] 进而可得\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}+\dfrac{1}{n+2}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1},\] 因此\[\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1}=\dfrac{x_{n-1}}{(n-1)^2\cdot n}+\dfrac{1}{n}=\cdots =\dfrac{x_1}{2}+\dfrac 12=2,\]所以\(x_n=n^2(2n+1),n\in\mathbf N^*\).
评:这里除去的这一项\((n+1)^2(n+2)\)是由常数变易法得来的.

MT【129】常数变易法的更多相关文章

  1. MT【316】常数变易法

    已知数列$\{a_n\}$满足$a_1=0,a_{n+1}=\dfrac{n+2}{n}a_n+1$,求$a_n$ 解答:$\dfrac{a_{n+1}}{n(n+1)}=\dfrac{a_n}{n( ...

  2. Android 4.4 Kitkat Phone工作流程浅析(七)__来电(MT)响铃流程

    本文来自http://blog.csdn.net/yihongyuelan 转载请务必注明出处 本文代码以MTK平台Android 4.4为分析对象,与Google原生AOSP有些许差异,请读者知悉. ...

  3. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  4. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  5. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

  7. DCMTK3.6.0 (MT支持库)安装 完整说明

    环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcm ...

  8. visual studio运行时库MT、MTd、MD、MDd的研究(转载)

    转载:http://blog.csdn.net/ybxuwei/article/details/9095067 转载:http://blog.sina.com.cn/s/blog_624485f701 ...

  9. 关于电脑玩MT以及多开的方法

    方法是转的别人的首先感谢原创者!!上四开屏幕截图,因为小伙伴需要8张卡,所以我四个四个一起练.8开我的电脑估计都有压力,五开六开可能没问题,但是为了方便就四开,练完四个再练四个.图接下来说下多开模拟器 ...

随机推荐

  1. AndroidStudio下使用 RecyclerView xml文件不显示预览条目并报错类似:NoClassDefFoundError 问题解决

    在项目中使用RecyclerView是很普遍的,最近工作中遇到了这种情况: RecyclerView可以正常使用 不会报错 但是在layout中的xml文件中不显示并且报错,如下图:(报的错忘了截了, ...

  2. Laya资源加载小记

    Laya.Loader负责资源的加载逻辑,被LoaderManager管理. Laya支持多种类型资源加载,也支持自定义类型加载.不同类型的加载方式可能不同. Laya.Loader缓存已经被加载过得 ...

  3. hadoop最新稳定版本使用建议

    Apache Hadoop Apache版本衍化比较快,我给大家介绍一下过程 ApacheHadoop版本分为两代,我们将第一代Hadoop称为Hadoop 1.0,第二代Hadoop称为Hadoop ...

  4. 学员管理系统(SQLAlchemy 实现)

    一.业务逻辑 二.设计表结构 三.代码结构 start.py import os, sys sys.path.insert(0, os.path.dirname(os.path.dirname(os. ...

  5. SharpDevelop 笔记

    1. 下载地址: http://jaist.dl.sourceforge.net/project/sharpdevelop/ 2. 使用 VS2012 去掉编译不通过的 Test ,其它可以运行调试. ...

  6. win10浏览器访问vmware中ubuntu开启的某个服务端口出现的问题

    问题描述 1. win10系统中浏览器能正常访问  ubuntu中nginx服务器的80端口, 但是不能访问8082 问题原因 ubuntu 防火墙默认没有启用 8082端口, 需要开启这个端口号 解 ...

  7. 第十周psp作业

    本周psp 本周进度条 代码累积折线图 博文字数累积折线图 饼状图

  8. 2017-2018-2学期 20172324《Java程序设计》第六周学习总结

    20172324<Java程序设计>第六周学习总结 教材学习内容总结 如何创建数组以及int[] X与int X[]的区别(编译时是没有差别的,只是前者与其他类型的声明方式有一致性) 每一 ...

  9. 20145214《网络对抗》MAL_后门原理与实践

    20145214<网络对抗>MAL_后门原理与实践 基础问题回答 (1)例举你能想到的一个后门进入到你系统中的可能方式? 网页上查找资料时有时会不小心点到弹出来的广告,如果这个广告是个钓鱼 ...

  10. EDK_II环境搭建与测试

    一. 环境准备 Windows 10 (64位)专业版 Visual Studio 2010旗舰版(默认路径安装) Mscrosoft SDKs 7.0A BIOS综合包里的EDK开发环境 二. 实验 ...