MT【129】常数变易法
已知数列\(\{x_n\}\)满足\[x_{n+1}=\left(\dfrac 2{n^2}+\dfrac 3n+1\right)x_n+n+1,n\in\mathbf N^*,\]且\(x_1=3\),求数列\(\{x_n\}\)的通项公式.
解答:
根据题意,有\[x_{n+1}=\dfrac{(n+1)(n+2)}{n^2}x_n+n+1,\]于是\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{(n+1)(n+2)},\] 进而可得\[\dfrac{x_{n+1}}{(n+1)^2(n+2)}+\dfrac{1}{n+2}=\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1},\] 因此\[\dfrac{x_n}{n^2(n+1)}+\dfrac{1}{n+1}=\dfrac{x_{n-1}}{(n-1)^2\cdot n}+\dfrac{1}{n}=\cdots =\dfrac{x_1}{2}+\dfrac 12=2,\]所以\(x_n=n^2(2n+1),n\in\mathbf N^*\).
评:这里除去的这一项\((n+1)^2(n+2)\)是由常数变易法得来的.
MT【129】常数变易法的更多相关文章
- MT【316】常数变易法
已知数列$\{a_n\}$满足$a_1=0,a_{n+1}=\dfrac{n+2}{n}a_n+1$,求$a_n$ 解答:$\dfrac{a_{n+1}}{n(n+1)}=\dfrac{a_n}{n( ...
- Android 4.4 Kitkat Phone工作流程浅析(七)__来电(MT)响铃流程
本文来自http://blog.csdn.net/yihongyuelan 转载请务必注明出处 本文代码以MTK平台Android 4.4为分析对象,与Google原生AOSP有些许差异,请读者知悉. ...
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题
一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1) 打开项目的Property Pages对话框 2) 点击左侧C/C ...
- MT写的对URL操作的两个方法
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- MD(d)、MT(d)编译选项的区别
1.编译选项的位置 以VS2005为例,这样子打开: 1) 打开项目的Property Pages对话框 2) 点击左侧C/C++节 3) 点击Code ...
- DCMTK3.6.0 (MT支持库)安装 完整说明
环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcm ...
- visual studio运行时库MT、MTd、MD、MDd的研究(转载)
转载:http://blog.csdn.net/ybxuwei/article/details/9095067 转载:http://blog.sina.com.cn/s/blog_624485f701 ...
- 关于电脑玩MT以及多开的方法
方法是转的别人的首先感谢原创者!!上四开屏幕截图,因为小伙伴需要8张卡,所以我四个四个一起练.8开我的电脑估计都有压力,五开六开可能没问题,但是为了方便就四开,练完四个再练四个.图接下来说下多开模拟器 ...
随机推荐
- Activity启动过程中获取组件宽高的五种方式
第一种:(重写Activity的onWindowFocusChanged方法) /** * 重写Acitivty的onWindowFocusChanged方法 */ @Override public ...
- 一个IT男的表白
致BCD6 CEC0 C3F4 转一轮肩胛骨 倒一杯铁观音 白驹过隙,倏忽两秋 远方有希望和梦想 有火车.微信美颜视频聊天和碧根果 有你的支持 如果身旁没有你 生活无趣失去动力 就像python失去类 ...
- DICOM 协议学习笔记之 What is DICOM
什么是DICOM? Dicom (Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052 ...
- webpack构建Vue项目引入jQ时发生“'$' is defined but never used”的处理
今天公司需要新建个数据后台,就按照查到的方法构建了Vue框架的项目,引入jQ.bootstrap时,按照在线方法配置,发现 main.js 里的引用jQ一直显示红标,没多想,在按照网上配置完后,npm ...
- 将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository The server may be unreachable or the URL may be incorrect
将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository The server may be unreachabl ...
- 暑假作业app博客
一.光照传感器 界面 简介 运用了传感器类,通过手机的感应区根据当时的光照强度显示出数据. 核心代码 protected void onCreate(Bundle savedInstanceState ...
- 2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-最后阶段
2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-最后阶段 最后的一周,时间越来越紧张,因为之前的拖沓和一些事情的耽误,导致了如今的紧张,这一周应该是我们小组效率最高 ...
- spring冲刺第六天
昨天编写地图代码,完善地图界面,使其变得美观. 今天把地图界面初步完成,和其他团队成员的成果进行结合,整合人物和地图代码. 遇到的问题:在整合时遇到的问题比较多,今天没有整合成功.
- C#编程概述
一个简单的c#程序 标识符 标识符是一种字符串,用来命名变量.方法.参数和许多后面将要阐述的其他程序结构. 关键字 所有C#关键字都由小写字母组成,但是.NET类型名使用Pascal大小写约定. Ma ...
- spring冲刺阶段之团队工作总结
一.小组成员: 王俊凯(项目经理) 罗林杰(产品负责人) 王逸辉(Master) 罗凯杰 二.任务分配情况 王俊凯:生成题目的代码编写并提出编写意见 罗林杰:负责把按钮和界面内容连接到代码上及主要代码 ...