主要内容:

1、QR分解定义

2、QR分解求法

3、QR分解与最小二乘

4、Matlab实现

 

一、QR分解

R分解法是三种将矩阵分解的方式之一。这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积。

QR 分解经常用来解线性最小二乘法问题。QR 分解也是特定特征值算法QR算法的基础。

定义:

实数矩阵 A 的 QR 分解是把 A 分解为Q、R,这里的 Q正交矩阵(意味着 QTQ = I)而 R 是上三角矩阵。类似的,我们可以定义 A 的 QL, RQ 和 LQ 分解。

更一般的说,我们可以因数分解复数 m×n 矩阵(有着 mn)为 m×n 酉矩阵(在 QQ = I 的意义上)和n×n 上三角矩阵的乘积。

如果 A非奇异的,则这个因数分解为是唯一,当我们要求 R 的对角是正数的时候。

二、QR分解的求法

QR分解的实际计算有很多方法,例如Givens旋转Householder变换,以及Gram-Schmidt正交化等等。每一种方法都有其优点和不足。

三、QR分解与最小二乘

最小二乘:

          对给定数据点{(Xi,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ,使误差的平方和E^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。

          最小二乘的矩阵形式:Ax=b,其中A为nxk的矩阵,x为kx1的列向量,b为nx1的列向量。如果n>k(方程的个数大于未知量的个数),这个方程系统称为Over Determined System,如果n<k(方程的个数小于未知量的个数),这个系统就是Under Determined System。

最小二乘与QR分解:

          正常来看,这个方程是没有解的,但在数值计算领域,我们通常是计算 min ||Ax-b||,解出其中的x。比较直观的做法是求解A'Ax=A'b,但通常比较低效。其中一种常见的解法是对A进行QR分解(A=QR),其中Q是nxk正交矩阵(Orthonormal Matrix),R是kxk上三角矩阵(Upper Triangular Matrix),然后min ||Ax-b|| = min ||QRx-b|| = min ||Rx-Q'b||,用MATLAB命令x=R\(Q'*b)可解得x。

最小二乘的Matlab实现:

① 一次函数使用polyfit(x,y,1)

②多项式函数使用 polyfit(x,y,n),n为次数

拟合曲线

x=[0.5,1.0,1.5,2.0,2.5,3.0],

y=[1.75,2.45,3.81,4.80,7.00,8.60]。

解:MATLAB程序如下:

x=[0.5,1.0,1.5,2.0,2.5,3.0];

y=[1.75,2.45,3.81,4.80,7.00,8.60];

p=polyfit(x,y,2)

x1=0.5:0.5:3.0;

y1=polyval(p,x1);

plot(x,y,'*r',x1,y1,'-b')

计算结果为:

p =0.5614 0.8287 1.1560

即所得多项式为y=0.5614x^2+0.8287x+1.15560

③非线性函数使用 lsqcurvefit(fun,x0,x,y)

四、QR分解的Matlab实现

[Q,R]=qr(A) or [Q,R]=qr(A,0)    (二者的区别自行help或doc一下)
其中Q代表正规正交矩阵,
而R代表上三角形矩阵。

此外,原矩阵A不必为正方矩阵; 如果矩阵A大小为n*m,则矩阵Q大小为n*m,矩阵R大小为m*m。

五、参考文献:

http://blog.sina.com.cn/s/blog_64367bb90100ikji.html

http://www.360doc.com/content/13/1015/09/12712639_321543226.shtml

 

 

 

QR分解与最小二乘的更多相关文章

  1. QR分解与最小二乘(转载自AndyJee)

    转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...

  2. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  3. QR分解

        从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...

  4. QR 分解

    将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质.   预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着 ...

  5. QR分解迭代求特征值——原生python实现(不使用numpy)

    QR分解: 有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法 具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6 ...

  6. 矩阵QR分解

    1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量  相互垂直,且模长为1: 如果将  orthonormal 向量按列组织成矩阵,矩阵为  ...

  7. 【矩阵】RQ/QR 分解

    Multiple View Geometry in Computer Vision A.4.1.1 (page 579) 将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 ...

  8. 矩阵的QR分解

    #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> # ...

  9. 【matlab】 QR分解 求矩阵的特征值

    "QR_H.m" function [Q,R] = QR_tao(A) %输入矩阵A %输出正交矩阵Q和上三角矩阵R [n,n]=size(A); E = eye(n); X = ...

随机推荐

  1. 在Kali Linux上编译Windows EXP

    使用vc6.0去编译的时候,难免会出现点问题 这里找到MS11-046的exp来编译 poc地址:https://www.exploit-db.com/exploits/40564/ 首先需要安装mi ...

  2. 【ACM-ICPC 2018 沈阳赛区网络预赛】不太敢自称官方的出题人题解

    A. Gudako and Ritsuka 链接 by Yuki & Asm.Def 期望难度:Hard- 考虑从后往前进行博弈动态规划,在这一过程中维护所有的先手必胜区间.区间不妨采用左开右 ...

  3. bzoj 3926

    后缀自动机扩展到树形结构上. 先建出大的Trie,然后我们得到了一棵Trie树,对于树上的每个节点,保存一个后缀自动机从根走它代表的字符串后到达的节点,每次其儿子就从父亲的这个节点开始扩展. /*** ...

  4. 【对比分析六】JavaScript中GET和POST的区别及使用场景

    区别: GET:一般用于信息获取,使用URL传递参数,对所发送信息的数量也有限制,一般在2000个字符 POST:一般用于修改服务器上的资源,对所发送的信息没有限制 GET方式需要使用 Request ...

  5. python知识(3)----正则表达式

    python的正则表达式使用起来非常的方便,基本思路就是编译规则,匹配字符串,输出字符串 参考资料 Python中的正则表达式教程

  6. Hibernate3 jar包的作用[转]

    from:http://nopainnogain.iteye.com/blog/761630 (1)hibernate3.jar: Hibernate的核心库,没有什么可说的,必须使用的jar包 (2 ...

  7. golang 实现轻量web框架

    经常看到很多同学在打算使用go做开发的时候会问用什么http框架比较好.其实go的 http package 非常强大,对于一般的 http rest api 开发,完全可以不用框架就可以实现想要的功 ...

  8. Node.js modules you should know about: request

    Hey everyone! This is the fourth post in my new node.js modules you should know about article series ...

  9. struts2对拦截器使用带实例

    拦截器是struts2的核心.拦截器可以拦截请求,控制视图的走向.那么怎么来实现自定义的拦截器呢? 这里我们做一个例子. 首先假现在做了两个jsp页面一个是登陆的信息的(用session来模拟),一个 ...

  10. [Shell学习笔记] 命令行下的高级网络工具cURL命令

    原文: http://www.1987.name/365.html Linux curl命令是一个利用URL规则在命令行下工作的文件传输工具.它支持文件的上传和下载,所以是综合传输工具,但按传统,习惯 ...