主要内容:

1、QR分解定义

2、QR分解求法

3、QR分解与最小二乘

4、Matlab实现

 

一、QR分解

R分解法是三种将矩阵分解的方式之一。这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积。

QR 分解经常用来解线性最小二乘法问题。QR 分解也是特定特征值算法QR算法的基础。

定义:

实数矩阵 A 的 QR 分解是把 A 分解为Q、R,这里的 Q正交矩阵(意味着 QTQ = I)而 R 是上三角矩阵。类似的,我们可以定义 A 的 QL, RQ 和 LQ 分解。

更一般的说,我们可以因数分解复数 m×n 矩阵(有着 mn)为 m×n 酉矩阵(在 QQ = I 的意义上)和n×n 上三角矩阵的乘积。

如果 A非奇异的,则这个因数分解为是唯一,当我们要求 R 的对角是正数的时候。

二、QR分解的求法

QR分解的实际计算有很多方法,例如Givens旋转Householder变换,以及Gram-Schmidt正交化等等。每一种方法都有其优点和不足。

三、QR分解与最小二乘

最小二乘:

          对给定数据点{(Xi,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ,使误差的平方和E^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。

          最小二乘的矩阵形式:Ax=b,其中A为nxk的矩阵,x为kx1的列向量,b为nx1的列向量。如果n>k(方程的个数大于未知量的个数),这个方程系统称为Over Determined System,如果n<k(方程的个数小于未知量的个数),这个系统就是Under Determined System。

最小二乘与QR分解:

          正常来看,这个方程是没有解的,但在数值计算领域,我们通常是计算 min ||Ax-b||,解出其中的x。比较直观的做法是求解A'Ax=A'b,但通常比较低效。其中一种常见的解法是对A进行QR分解(A=QR),其中Q是nxk正交矩阵(Orthonormal Matrix),R是kxk上三角矩阵(Upper Triangular Matrix),然后min ||Ax-b|| = min ||QRx-b|| = min ||Rx-Q'b||,用MATLAB命令x=R\(Q'*b)可解得x。

最小二乘的Matlab实现:

① 一次函数使用polyfit(x,y,1)

②多项式函数使用 polyfit(x,y,n),n为次数

拟合曲线

x=[0.5,1.0,1.5,2.0,2.5,3.0],

y=[1.75,2.45,3.81,4.80,7.00,8.60]。

解:MATLAB程序如下:

x=[0.5,1.0,1.5,2.0,2.5,3.0];

y=[1.75,2.45,3.81,4.80,7.00,8.60];

p=polyfit(x,y,2)

x1=0.5:0.5:3.0;

y1=polyval(p,x1);

plot(x,y,'*r',x1,y1,'-b')

计算结果为:

p =0.5614 0.8287 1.1560

即所得多项式为y=0.5614x^2+0.8287x+1.15560

③非线性函数使用 lsqcurvefit(fun,x0,x,y)

四、QR分解的Matlab实现

[Q,R]=qr(A) or [Q,R]=qr(A,0)    (二者的区别自行help或doc一下)
其中Q代表正规正交矩阵,
而R代表上三角形矩阵。

此外,原矩阵A不必为正方矩阵; 如果矩阵A大小为n*m,则矩阵Q大小为n*m,矩阵R大小为m*m。

五、参考文献:

http://blog.sina.com.cn/s/blog_64367bb90100ikji.html

http://www.360doc.com/content/13/1015/09/12712639_321543226.shtml

 

 

 

QR分解与最小二乘的更多相关文章

  1. QR分解与最小二乘(转载自AndyJee)

    转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...

  2. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  3. QR分解

        从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...

  4. QR 分解

    将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质.   预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着 ...

  5. QR分解迭代求特征值——原生python实现(不使用numpy)

    QR分解: 有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法 具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6 ...

  6. 矩阵QR分解

    1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量  相互垂直,且模长为1: 如果将  orthonormal 向量按列组织成矩阵,矩阵为  ...

  7. 【矩阵】RQ/QR 分解

    Multiple View Geometry in Computer Vision A.4.1.1 (page 579) 将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 ...

  8. 矩阵的QR分解

    #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> # ...

  9. 【matlab】 QR分解 求矩阵的特征值

    "QR_H.m" function [Q,R] = QR_tao(A) %输入矩阵A %输出正交矩阵Q和上三角矩阵R [n,n]=size(A); E = eye(n); X = ...

随机推荐

  1. nginx_lua vs nginx+php 应用场景

    在我的印象中很多人还是选择nginx+php这种组合搭配,你的选择是nginx+lua,那么nginx+lua比和php的组合优势在哪里?清无:首先,Nginx+php之间是要有进程之间通信的,这样以 ...

  2. Codeforces Round #350 (Div. 2) C. Cinema 水题

    C. Cinema 题目连接: http://www.codeforces.com/contest/670/problem/C Description Moscow is hosting a majo ...

  3. UVA 10177 Sqr/Rects/Cubes/Boxes?

    Problem J (2/3/4)-D Sqr/Rects/Cubes/Boxes? Input: standard input Output: standard output Time Limit: ...

  4. Mac安装homebrew安装到指定目录

    第一种直接安装在/usr/local目录下 mac 打开终端输入 ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebr ...

  5. ios项目开发(天气预报项目):使用正则获取 weather.com.cn站点信息

    NSString *pattern = @"(?<=<td class=\"bigblod\">).*?(?=</td>)"; 2 ...

  6. 优化中的subgradient方法

    哎.刚刚submit上paper比較心虚啊.无心学习.还是好好码码文字吧. subgradient介绍 subgradient中文名叫次梯度.和梯度一样,全然能够多放梯度使用.至于为什么叫子梯度,是由 ...

  7. 想要快速上手 Spring Boot?看这些教程就足够了!| 码云周刊第 81 期

    原文:https://blog.gitee.com/2018/08/19/weekly-81/ 想要快速上手 Spring Boot?看这些教程就足够了!| 码云周刊第 81 期 码云周刊 | 201 ...

  8. 撤销正在审核的app

    一个app还未通过审核,但是新版本已经出来了,怎样才能撤销正在审核的app呢? 方法:在 是binary deatils里用 reject this binary.之后,即可以重新上传代码了.

  9. bat薪酬

    三大互联网巨头公司,百度腾讯跟阿里如何划分级别?薪资待遇又有多少?除非身居其位,否则很难探知,但是等你到那个位置知道了,却又不能说,至少不能在公 开场合谈论.接下来就为大家揭秘,百度.阿里与腾讯内部的 ...

  10. HostMonitor监控主机状态

    HostMonitor 可以对windows和linux下的主机进行很多信息的监控,还提供web方式查看