P是一类可以通过确定性图灵机(以下简称 图灵机)在多项式时间(Polynomial time)内解决的问题集合。
NP是一类可以通过非确定性图灵机( Non-deterministic Turing Machine)在多项式时间(Polynomial time)内解决的决策问题集合。
P是NP的子集,也就是说任何可以被图灵机在多项式时间内解决的问题都可以被非确定性的图灵机解决。
 
接下来说说NP 里最难得问题 NP-complete。
其定义如下,
如果一个决策问题 L 是 NP-complete的,那么L具备以下两个性质:
1) L  是 NP(给定一个解决NP-complete的方案(solution,感兴趣的读者可以思考一下solution 和 answer的区别),可以很快验证是否可行,但不存在已知高效的方案 。)
2) NP里的任何问题可以在多项式时间内转为 L。
 
而NP-Hard只需要具备NP-complete的第二个性质,因此NP-complete是NP-Hard的子集。
这四者的关系如下图(假设P!=NP):
 

简单理解 NP, P, NP-complete和NP-Hard的更多相关文章

  1. np.random.shuffle(x)与np.random.permutation(x)

    来自:https://blog.csdn.net/brucewong0516/article/details/79012233 将数组打乱随机排列 两种方法: np.random.shuffle(x) ...

  2. input屏蔽历史记录 ;function($,undefined) 前面的分号是什么用处 JSON 和 JSONP 两兄弟 document.body.scrollTop与document.documentElement.scrollTop兼容 URL中的# 网站性能优化 前端必知的ajax 简单理解同步与异步 那些年,我们被耍过的bug——has

    input屏蔽历史记录   设置input的扩展属性autocomplete 为off即可 ;function($,undefined) 前面的分号是什么用处   ;(function($){$.ex ...

  3. 关于 Promise 的一些简单理解

    一.ES6 中的 Promise 1.JS 如何解决 异步问题? (1)什么是 同步.异步? 同步指的是 需要等待 前一个处理 完成,才会进行 下一个处理. 异步指的是 不需要等待 前一个处理 完成, ...

  4. git的简单理解及基础操作命令

    前端小白一枚,最近开始使用git,于是花了2天看了廖雪峰的git教程(偏实践,对于学习git的基础操作很有帮助哦),也在看<git版本控制管理>这本书(偏理论,内容完善,很不错),针对所学 ...

  5. 简单理解Struts2中拦截器与过滤器的区别及执行顺序

    简单理解Struts2中拦截器与过滤器的区别及执行顺序 当接收到一个httprequest , a) 当外部的httpservletrequest到来时 b) 初始到了servlet容器 传递给一个标 ...

  6. [转]简单理解Socket

    简单理解Socket 转自 http://www.cnblogs.com/dolphinX/p/3460545.html  题外话 前几天和朋友聊天,朋友问我怎么最近不写博客了,一个是因为最近在忙着公 ...

  7. Js 职责链模式 简单理解

    js 职责链模式 的简单理解.大叔的代码太高深了,不好理解. function Handler(s) { this.successor = s || null; this.handle = funct ...

  8. Deep learning:四十六(DropConnect简单理解)

    和maxout(maxout简单理解)一样,DropConnect也是在ICML2013上发表的,同样也是为了提高Deep Network的泛化能力的,两者都号称是对Dropout(Dropout简单 ...

  9. Deep learning:四十二(Denoise Autoencoder简单理解)

    前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Be ...

  10. 简单理解dropout

    dropout是CNN(卷积神经网络)中的一个trick,能防止过拟合. 关于dropout的详细内容,还是看论文原文好了: Hinton, G. E., et al. (2012). "I ...

随机推荐

  1. 钉钉开发c#帮助类 获取用户信息 DingHelper.cs

    using System;using System.Collections.Generic;using System.Configuration;using System.Linq;using Sys ...

  2. [转帖]认识固态:SSD硬盘内外结构解析

    认识固态:SSD硬盘内外结构解析 来自: 中关村在线 收藏 分享 邀请 固态硬盘(Solid State Drive),简称固态盘(SSD),是用固态电子存储芯片阵列而制成的硬盘,由控制单元和存储单元 ...

  3. [微软官网]SQLSERVER的版本信息

    来源:https://docs.microsoft.com/zh-cn/sql/sql-server/editions-and-components-of-sql-server-2017?view=s ...

  4. JS 随机整数

    <script>   function GetRandomNum(Min,Max){   var Range = Max - Min;   var Rand = Math.random() ...

  5. [BZOJ4820]硬币游戏 KMP+高斯消元

    4820: [Sdoi2017]硬币游戏 Time Limit: 10 Sec  Memory Limit: 128 MB Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的 ...

  6. MT【161】韦恩图

    (清华2017.4.29标准学术能力测试25) 若$N$的三个子集$A,B,C$满足$|A\cap B|=|B\cap C|=|C\cap A|=1$,且$A\cap B\cap C=\varnoth ...

  7. 【BZOJ4774】修路(动态规划,斯坦纳树)

    [BZOJ4774]修路(动态规划,斯坦纳树) 题面 BZOJ 题解 先讲怎么求解最小斯坦纳树. 先明白什么是斯坦纳树. 斯坦纳树可以认为是最小生成树的一般情况.最小生成树是把所有给定点都要加入到联通 ...

  8. BZOJ3522 [Poi2014]Hotel 【树形dp】

    题目链接 BZOJ3522 题解 就是询问每个点来自不同子树离它等距的三个点的个数 数据支持\(O(n^2)\),可以对每个距离分开做 设\(f[i][j]\)表示\(i\)的子树中到\(i\)距离为 ...

  9. 【uoj219】 NOI2016—优秀的拆分

    http://uoj.ac/problem/219 (题目链接) 题意 一个字符串求它有多少个形如AABB的子串. Solution 其实跟后缀数组里面一个论文题poj3693处理方式差不多吧. 先处 ...

  10. 2017实习【Java研发】面经

    标签: 实习 面经 Java研发 阿里.腾讯.华为 找2017暑假实习,经历过被腾讯拒绝的无奈,也有拿到阿里和华为offer的喜悦,找实习过程也有一段时间了,在此把之前的面试知识点和经历做个小总结,以 ...