题面

题解

将无序化为有序,最后答案除以$m!$。

设$f[i]$表示选出了$i$个子集,并且满足所有的限制的方案数。

因为转移困难,所以考虑容斥

  1. 限制了每个数的出现次数为偶数,所以如果前$i - 1$个子集是确定的,第$i$个的选择唯一,

    一定是前面选了奇数次的元素的集合。

    所以如果没有其他限制的情况下,选出$i$个自己的方案数为$A_{2^n-1}^{i-1}$

  2. 然后减去第$i$个集合为空的情况,方案数为$f[i-1]$

  3. 然后减去第$i$个集合与之前某个子集相同的情况。

    如果将这两个相同的集合删去,剩下的集合一定合法,方案数为$f[i-2]$。

    又第$i$个子集有$2^n-1-(i-2)$种方案,同时和第$i$个子集相同的集合的位置有$i-1$种,

    所以方案数为$f[i-2]\times(i-1)\times(2^n-1-(i-2))$

所以转移为

$$ f[i]=A_{2^n-1}^{i-1}-f[i-1]-(f[i-2]\times(i-1)\times(2^n-1-(i-2))) $$

边界$f[0]=1,f[1]=0$

真毒瘤

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x)) const int maxn(1000010), Mod(100000007);
int n, m, f[maxn], Inv, A[maxn], Pow; int fastpow(int x, int y)
{
int ans = 1;
while(y)
{
if(y & 1) ans = 1ll * ans * x % Mod;
x = 1ll * x * x % Mod, y >>= 1;
}
return ans;
} int main()
{
scanf("%d%d", &n, &m);
f[0] = A[0] = Inv = 1;
for(RG int i = 2; i <= m; i++) Inv = 1ll * Inv * i % Mod;
Inv = fastpow(Inv, Mod - 2); Pow = (fastpow(2, n) - 1 + Mod) % Mod;
for(RG int i = 1; i <= m; i++) A[i] = 1ll * A[i - 1] * (Pow - i + 1) % Mod;
for(RG int i = 2; i <= m; i++)
{
f[i] = (A[i - 1] - f[i - 1] + Mod) % Mod;
f[i] = (f[i] - 1ll * f[i - 2] * (i - 1)
% Mod * (Pow - (i - 2)) % Mod) % Mod;
f[i] = (f[i] + Mod) % Mod;
}
printf("%lld\n", 1ll * f[m] * Inv % Mod);
return 0;
}

【HNOI2011】卡农的更多相关文章

  1. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

  2. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  3. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  4. P3214 [HNOI2011]卡农

    题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...

  5. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  6. [HNOI2011]卡农

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  7. [HNOI2011]卡农 题解

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  8. [HNOI2011]卡农 (数论计数,DP)

    题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...

  9. bzoj 2339: [HNOI2011]卡农

    Description Solution 比较难想.... 我们先考虑去掉无序的这个条件,改为有序,最后除 \(m!\) 即可 设 \(f[i]\) 表示前\(i\)个合法集合的方案数 明确一点: 如 ...

  10. 2339: [HNOI2011]卡农

    Description 首先去除顺序不同算一种的麻烦,就是最后答案除以总片段数\(2^m-1\) 设\(f_i\)表示安排\(i\)个片段的合法种类 那么对于任何一个包含\(i-1\)个片段的序列(除 ...

随机推荐

  1. [IIS] IIS网站对文件读写无权限的解决方案(Access等)

    Access数据库无写权限:在NTFS文件安全属性中加入对IIS_IUSRS用户的修改权限即可.

  2. springMVC入门-03

    接着上一讲介绍springMVC针对rest风格的支持. 查询数据 使用前:/user_show?id=120 使用后:/user/120 删除数据 使用前:/user_delete?id=123 使 ...

  3. 查看windows所有exe的启动参数。

    在cmd中输入 wmicprocess 即可查看到所有进程的启动参数和运行参数.

  4. linux 创建新用户并增加管理员权限

    1.adduser与useradd有什么区别?2.那种方式会自动创建组.用户组等信息? 3.如何新建用户具有管理员权限? $是普通管员,#是系统管理员,root用户默认是没有密码的,因此也就无法使用( ...

  5. print(dir(...)) 打印对象或者类中的方法和函数

  6. jQuery实现简易轮播图的效果

    (图片素材取自于小米官网) 刚开始接触jQuery的学习,个人觉得如果为了实现多数的动态效果,jQuery的确很简易方便. 下面简易的轮播图效果,还请前辈多多指教~ (努力学习react vue an ...

  7. echarts问题

    1.鼠标经过折线图  显示的框中的文字设置,需要设置tooltip下的formatter属性 formatter属性值可以为字符串也可function formatter:function(data) ...

  8. HtmlImageGenerator字体乱码问题解决、html2image放linux上乱码问题解决

    使用html2image-0.9.jar生成图片. 在本地window系统正常,放到服务器linux系统时候中文乱码问题.英文可以,中文乱码应该就是字体问题了. 一.首先需要在linux安装字体,si ...

  9. 死磕salt系列-salt文章目录汇总

    死磕salt系列-salt入门 死磕salt系列-salt配置文件 死磕salt系列-salt grains pillar 配置 死磕salt系列-salt 常用modules 死磕salt系列-sa ...

  10. 创建JDBCUtils工具类

    JDBCUtils工具类 私有化构造函数,外界无法直接创建对象 提供公共的,静态的,getConnection 方法,用来给外界提供数据库连接 提供公共的,静态的,close方法,用来释放资源 pac ...