A new Graph Game

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1849    Accepted Submission(s): 802

Problem Description
An undirected graph is a graph in which the nodes are connected by undirected arcs. An undirected arc is an edge that has no arrow. Both ends of an undirected arc are equivalent--there is no head or tail. Therefore, we represent an
edge in an undirected graph as a set rather than an ordered pair.

Now given an undirected graph, you could delete any number of edges as you wish. Then you will get one or more connected sub graph from the original one (Any of them should have more than one vertex).

You goal is to make all the connected sub graphs exist the Hamiltonian circuit after the delete operation. What’s more, you want to know the minimum sum of all the weight of the edges on the “Hamiltonian circuit” of all the connected sub graphs (Only one “Hamiltonian
circuit” will be calculated in one connected sub graph! That is to say if there exist more than one “Hamiltonian circuit” in one connected sub graph, you could only choose the one in which the sum of weight of these edges is minimum).

  For example, we may get two possible sums:




(1)  7 + 10 + 5 = 22

(2)  7 + 10 + 2 = 19

(There are two “Hamiltonian circuit” in this graph!)
 
Input
In the first line there is an integer T, indicates the number of test cases. (T <= 20)

In each case, the first line contains two integers n and m, indicates the number of vertices and the number of edges. (1 <= n <=1000, 0 <= m <= 10000)

Then m lines, each line contains three integers a,b,c ,indicates that there is one edge between a and b, and the weight of it is c . (1 <= a,b <= n, a is not equal to b in any way, 1 <= c <= 10000)
 
Output
Output “Case %d: “first where d is the case number counted from one. Then output “NO” if there is no way to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation. Otherwise, output
the minimum sum of weight you may get if you delete the edges in the optimal strategy.


 
Sample Input
3 3 4
1 2 5
2 1 2
2 3 10
3 1 7 3 2
1 2 3
1 2 4 2 2
1 2 3
1 2 4
 
Sample Output
Case 1: 19
Case 2: NO
Case 3: 6
Hint
In Case 1:
You could delete edge between 1 and 2 whose weight is 5. In Case 2:
It’s impossible to get some connected sub graphs that any of them exists the Hamiltonian circuit after the delete operation.
 
Author
AekdyCoin
 
Source
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int MAXN = 10010;
const int MAXM = 100100;
const int INF = 1<<30;
struct EDG{
int to,next,cap,flow;
int cost; //每条边的单位价格
}edg[MAXM];
int head[MAXN],eid;
int pre[MAXN], cost[MAXN] ; //点0~(n-1) void init(){
eid=0;
memset(head,-1,sizeof(head));
}
void addEdg(int u,int v,int cap,int cst){
edg[eid].to=v; edg[eid].next=head[u]; edg[eid].cost = cst;
edg[eid].cap=cap; edg[eid].flow=0; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v]; edg[eid].cost = -cst;
edg[eid].cap=0; edg[eid].flow=0; head[v]=eid++;
} bool inq[MAXN];
bool spfa(int sNode,int eNode,int n){
queue<int>q;
for(int i=0; i<n; i++){
inq[i]=false; cost[i]= INF;
}
cost[sNode]=0; inq[sNode]=1; pre[sNode]=-1;
q.push(sNode);
while(!q.empty()){
int u=q.front(); q.pop();
inq[u]=0;
for(int i=head[u]; i!=-1; i=edg[i].next){
int v=edg[i].to;
if(edg[i].cap-edg[i].flow>0 && cost[v]>cost[u]+edg[i].cost){ //在满足可增流的情况下。最小花费
cost[v] = cost[u]+edg[i].cost;
pre[v]=i; //记录路径上的边
if(!inq[v])
q.push(v),inq[v]=1;
}
}
}
return cost[eNode]!=INF; //推断有没有增广路
}
//反回的是最大流,最小花费为minCost
int minCost_maxFlow(int sNode,int eNode ,int& minCost,int n){
int ans=0;
while(spfa(sNode,eNode,n)){
ans++;
for(int i=pre[eNode]; i!=-1; i=pre[edg[i^1].to]){
edg[i].flow+=1; edg[i^1].flow-=1;
minCost+=edg[i].cost;
}
}
return ans;
}
void scanf(int &ans){
char ch;
while(ch=getchar()){
if(ch>='0'&&ch<='9')
break;
}
ans=ch-'0';
while(ch=getchar()){
if(ch<'0'||ch>'9')
break;
ans=ans*10+ch-'0';
}
}
int mapt[1005][1005];
int main(){
int T,_case=0,n,m , u, v, d ;
scanf(T);
while(T--){
scanf(n); scanf(m);
init();
int s=0, t=2*n+1; for(int i=1; i<=n; i++){
addEdg(s , i , 1 , 0);
addEdg(i+n , t , 1 , 0);
for(int j=1; j<=n; j++)
mapt[i][j]=INF;
}
while(m--){
scanf(u); scanf(v); scanf(d);
if(mapt[u][v]>d)
mapt[u][v]=mapt[v][u]=d;
}
for( u=1; u<=n; u++)
for(v=1; v<=n; v++)
if(mapt[u][v]!=INF)
addEdg(u,v+n,1,mapt[u][v]); int mincost=0;
n-= minCost_maxFlow(s , t , mincost , t+1);
printf("Case %d: ",++_case);
if(n==0)
printf("%d\n",mincost);
else
printf("NO\n");
}
}

HDU 3435 A new Graph Game(最小费用最大流)&amp;HDU 3488的更多相关文章

  1. 【进阶——最小费用最大流】hdu 1533 Going Home (费用流)Pacific Northwest 2004

    题意: 给一个n*m的矩阵,其中由k个人和k个房子,给每个人匹配一个不同的房子,要求所有人走过的曼哈顿距离之和最短. 输入: 多组输入数据. 每组输入数据第一行是两个整型n, m,表示矩阵的长和宽. ...

  2. hdu 2485 Destroying the bus stations 最小费用最大流

    题意: 最少需要几个点才能使得有向图中1->n的距离大于k. 分析: 删除某一点的以后,与它相连的所有边都不存在了,相当于点的容量为1.但是在网络流中我们只能直接限制边的容量.所以需要拆点来完成 ...

  3. hdu 2686&&hdu 3376(拆点+构图+最小费用最大流)

    Matrix Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  4. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  5. hdu 2686 Matrix 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2686 Yifenfei very like play a number game in the n*n ...

  6. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  7. hdu 4494 Teamwork 最小费用最大流

    Teamwork Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4494 ...

  8. HDU 5988.Coding Contest 最小费用最大流

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  9. hdu 3667(拆边+最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...

  10. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

随机推荐

  1. Linux-cpu分析-vmstat

    转载:https://blog.csdn.net/ty_hf/article/details/63394960 一. 前言 为了更方便的理解本篇内容含义,所以请最好看看如下繁琐的概念,更容易理解. 没 ...

  2. TCP/IP、SOCKET、HTTP之间的联系与区别

    主要内容: 1.网络的七层协议 2.TCP/IP.SOCKET.HTTP简介 3.TCP连接.HTTP连接.Socket连接的区别 一.网络的七层协议 网络七层由下往上分别为物理层.数据链路层.网络层 ...

  3. mac 下vim 配置文件

    " Configuration file for vim set modelines=0 " CVE-2007-2438 " Normally we use vim-ex ...

  4. 局域网连接打印机(Win10)

    局域网支持交换机和WIFI环境下进行连接(要求连上打印机的电脑已开启) 1.首先打开控制面板 2.硬件和声音 3.高级打印机设置 4.找到要连接的打印机,通过浏览(R) 添加局域网某台机器上的打印机, ...

  5. Linux一些基本命令一(学习笔记三)

    菜鸟记录. 一.更改主机名 hostname 新的主机名 hostname ln0491 将主机名更改为ln0491 登出再登陆,就变为新的主机名 二.新建文件夹和删除 如:在当前路径新建data文件 ...

  6. Linux高性能server编程——多线程编程(下)

    多线程编程 条件变量 假设说相互排斥锁是用于同步线程对共享数据的訪问的话.那么条件变量则是用于线程之间同步共享数据的值. 条件变量提供了一种线程间的通信机制:当某个共享数据达到某个值得时候,唤醒等待这 ...

  7. 美国程序猿(软件project师)平均年薪状况调查

    来源站点:Indeed.com&computerengineeringsalarydata.com Average Software Engineer Salary by 50 States ...

  8. oracle 11g自动时间分区备忘

    一.时间date类型:create table spdb_demo(outBeginDate date,)partition by range(outBeginDate) interval(numto ...

  9. java stream collector

    Java Stream API进阶篇 本文github地址 上一节介绍了部分Stream常见接口方法,理解起来并不困难,但Stream的用法不止于此,本节我们将仍然以Stream为例,介绍流的规约操作 ...

  10. Fail Fast and Fail Safe Iterators in Java

    https://www.geeksforgeeks.org/fail-fast-fail-safe-iterators-java/ Fail Fast and Fail Safe Iterators ...