传送门

题目描述

设r是个2^k 进制数,并满足以下条件:

(1)r至少是个2位的2^k 进制数。

(2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。

(3)将r转换为2进制数q后,则q的总位数不超过w。

在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的。

问:满足上述条件的不同的r共有多少个?

我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2^k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2^k 进制数r。

例:设k=3,w=7。则r是个八进制数(23=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:

2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。

3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。

所以,满足要求的r共有36个。

输入输出格式

输入格式:

输入只有1行,为两个正整数,用一个空格隔开:

k W

输出格式:

输出为1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。

(提示:作为结果的正整数可能很大,但不会超过200位)

输入输出样例

输入样例#1:

3 7
输出样例#1:

36

说明

NOIP 2006 提高组 第四题

P1066 2^k进制数的更多相关文章

  1. 洛谷 P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  2. 洛谷P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  3. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  4. 洛谷P1066 2^k进制数(题解)(递推版)

    https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...

  5. [NOIP2006] 提高组 洛谷P1066 2^k进制数

    题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...

  6. [Luogu P1066] 2^k进制数 (组合数或DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这 ...

  7. Luogu P1066 2^k进制数 组合数学

    分两种情况:$k|n$和$k$不整除$n$ 如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块:所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C ...

  8. 【洛谷p1066】2^k进制数

    (不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...

  9. [转]as3 算法实例【输出1 到最大的N 位数 题目:输入数字n,按顺序输出从1 最大的n 位10 进制数。比如输入3,则输出1、2、3 一直到最大的3 位数即999。】

    思路:如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从0到9的全排列.也就是说,我们把数字的每一位都从0到9排列一遍,就得到了所有的10进制数. /** *ch 存放数字 *n n ...

随机推荐

  1. 大数据应用之:MongoDB从入门到精通你不得不知的21个为什么?

    一.引言: 互联网的发展和电子商务平台的崛起,催生了大数据时代的来临,作为大数据典型开发框架的MongoDB成为了No-sql数据库的典型代表.MongoDB从入门到精通你不得不知的21个为什么专为大 ...

  2. 在反射中Member{get{..}set{..}}与Member{get;set;}的区别?

    最近的在写代码的时候,需要用到反射来获取类中的所有公开属性值,于是写下如下代码: StringBuilder sb = new StringBuilder(); foreach (var f in t ...

  3. Android的minSdkVersion,targetSdkVersion,maxSdkVersion

    参考http://developer.android.com/guide/topics/manifest/uses-sdk-element.html API Level 是一个整型值,表示Androi ...

  4. android中Canvas使用drawBitmap绘制图片

    1.主要的绘制图片方法 //Bitmap:图片对象,left:偏移左边的位置,top: 偏移顶部的位置     drawBitmap(Bitmap bitmap, float left, float ...

  5. How To Cluster Rabbit-MQ--reference

    Foreword This explanation of clustering Rabbit-MQ assumes that you’ve had some experience with Rabbi ...

  6. Content Provider Basics ——Content Provider基础

    A content provider manages access to a central repository of data. A provider is part of an Android ...

  7. Android开发--WIFI实现

    wifi的基本结构 在Android的官方文档中定义了如下五种状态: WIFI_STATE_DISABLING  WIFI网卡正在关闭  0 WIFI_STATE_DISABLED   WIFI网卡不 ...

  8. ExtJs的事件机制Event(学员总结)

    一.事件的三种绑定方式 1.HTML/DHTML 在标签中直接增加属性触发事件 [javascript] view plaincopy <script type="text/javas ...

  9. Dedecms当前位置{dede:field name='position'/}修改

    这个实在list_article.htm模板出现的,而这个模板通过loadtemplage等等一系列操作是调用的include 下的arc.archives.class.php $this->F ...

  10. (转)模板引擎类dedetemplate.class.php使用说明

    1.概述 织梦的模板标签类似于XML格式,所有的模板都含有定界符,默认情况下是{dede:*}和{/dede:*},“*”代表模板标记名称. 一般情况下{dede:*}和{/dede:*}是成对出现的 ...