传送门

题目描述

设r是个2^k 进制数,并满足以下条件:

(1)r至少是个2位的2^k 进制数。

(2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。

(3)将r转换为2进制数q后,则q的总位数不超过w。

在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的。

问:满足上述条件的不同的r共有多少个?

我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2^k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2^k 进制数r。

例:设k=3,w=7。则r是个八进制数(23=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:

2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。

3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。

所以,满足要求的r共有36个。

输入输出格式

输入格式:

输入只有1行,为两个正整数,用一个空格隔开:

k W

输出格式:

输出为1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。

(提示:作为结果的正整数可能很大,但不会超过200位)

输入输出样例

输入样例#1:

3 7
输出样例#1:

36

说明

NOIP 2006 提高组 第四题

P1066 2^k进制数的更多相关文章

  1. 洛谷 P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  2. 洛谷P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  3. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  4. 洛谷P1066 2^k进制数(题解)(递推版)

    https://www.luogu.org/problemnew/show/P1066(题目传送) (题解)https://www.luogu.org/problemnew/solution/P106 ...

  5. [NOIP2006] 提高组 洛谷P1066 2^k进制数

    题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...

  6. [Luogu P1066] 2^k进制数 (组合数或DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P1066 Solution 这是一道神奇的题目,我们有两种方法来处理这个问题,一种是DP,一种是组合数. 这 ...

  7. Luogu P1066 2^k进制数 组合数学

    分两种情况:$k|n$和$k$不整除$n$ 如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块:所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C ...

  8. 【洛谷p1066】2^k进制数

    (不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...

  9. [转]as3 算法实例【输出1 到最大的N 位数 题目:输入数字n,按顺序输出从1 最大的n 位10 进制数。比如输入3,则输出1、2、3 一直到最大的3 位数即999。】

    思路:如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从0到9的全排列.也就是说,我们把数字的每一位都从0到9排列一遍,就得到了所有的10进制数. /** *ch 存放数字 *n n ...

随机推荐

  1. 专注于个人服装定做_服装设计_Fabric_Design_Tailor-迦勒定制网

    专注于个人服装定做_服装设计_Fabric_Design_Tailor-迦勒定制网 客服热线:400-720-7206 工作时间:AM 09:00-PM 10:00 周六/周日/节假日:设计师休息

  2. ECLIPSE TOMCAT CONFIG JSTL

    {LJ?Dragon}[标题]Eclipse 配置 JSTL标签库 {LJ?Dragon}[Diary]2017年,愉快的开始:当和他们离别时,感觉失去了整个世界.........   1.JSTL简 ...

  3. SQL Server 2008中增强的"汇总"技巧

    本文转载:http://www.cnblogs.com/downmoon/archive/2012/04/06/2433988.html SQL Server 2008中的Pivot和UnPivot: ...

  4. Android URI简单介绍

    就Android平台而言,URI主要分三个部分:scheme, authority and path.当中authority又分为host和port.格式例如以下: scheme://host:por ...

  5. [PWA] 12. Intro to IndexedDB

    Use the library indexedDB-promised. Create a database and stroe: import idb from 'idb'; // Open(db_n ...

  6. Toast的使用具体解释

    Android中提供一种简单的Toast消息提示框机制,能够在用户点击了某些button后,提示用户一些信息,提示的信息不能被用户点击,Toast的提示信息依据用户设置的显示时间后自己主动消失.Toa ...

  7. android控件上面实现提醒信息

    android开发中,经常会用到显示一个提醒信息,比如个人中心,有新信息,购买商品后,在购物车控件,显示购物数量等.我们可以用,2个控件来实现,或者用层叠图. 还有一种简单方便的办法,使用别人的开源代 ...

  8. 数据的存储-NSKeyedArchiver和write to file介绍

    数据的存储-NSKeyedArchiver和write to file介绍 首先介绍各个文件的作用-->讲解文件位置的查找方法-->介绍数据存储的方式:1.使用归档方式存储数据 2.wri ...

  9. POJ 1265 Area POJ 2954 Triangle Pick定理

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5227   Accepted: 2342 Description ...

  10. python瓦登尔湖词频统计

    #瓦登尔湖词频统计: import string path = 'D:/python3/Walden.txt' with open(path,'r',encoding= 'utf-8') as tex ...