hdu-4612-Warm up(边双连通分量--有重边)
题意:有N 个点,M条边,加一条边,求割边最少。(有重边)
分析:先求双连通分量,缩点形成一个生成树,然后求这个的直径,割边-直径即是答案
因为有的图上可能有重边,这样不好处理。我们记录每条边的标号(一条无向边拆成的两条有向边标号相同)这样就能限制不走一样的边而能走重边!
// File Name: 1002.cpp
// Author: Zlbing
// Created Time: 2013年08月02日 星期五 18时16分10秒
#pragma comment(linker,"/STACK:102400000,102400000")
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
const int MAXN=2e5+; int n,m;
struct Edge{
int u,v;
Edge(){}
Edge(int a,int b){
u=a;
v=b;
}
};
vector<Edge> edges;
vector<int> G[MAXN];
vector<int> P[MAXN];
int dfs_clock,bcc_cnt;
int pre[MAXN];
int T[MAXN];
//fa为u的父亲边
//这样标识就可以走重边而不能走父亲边
int dfs1(int u,int fa)
{
int lowu=pre[u]=++dfs_clock;
for(int i=;i<G[u].size();i++)
{
int mm=G[u][i];
int v=edges[mm].v;
if(fa==(mm^))continue;
if(!pre[v])
{
int lowv=dfs1(v,mm);
lowu=min(lowu,lowv);
if(lowv>pre[u])
{
P[v].push_back(u);
P[u].push_back(v);
}
}
else if(pre[v]<pre[u])
{
lowu=min(pre[v],lowu);
}
}
return lowu;
}
void dfs2(int u,int fa)
{
T[u]=bcc_cnt;
for(int i=;i<G[u].size();i++)
{
int v=edges[G[u][i]].v;
bool f=true;
for(int j=;j<P[u].size();j++)
{
int vv=P[u][j];
if(v==vv)
{
f=false;break;
}
}
if(!f||T[v])continue;
dfs2(v,u);
}
}
void find_bcc(int n)
{
dfs_clock=,bcc_cnt=;
memset(pre,,sizeof(pre));
memset(T,,sizeof(T));
for(int i=;i<=n;i++)
if(!pre[i])
dfs1(i,-);
for(int i=;i<=n;i++)
if(!T[i])
{
bcc_cnt++;
dfs2(i,-);
}
}
vector<int> GG[MAXN];
int d[MAXN];
void dfs(int u,int dep)
{
d[u]=dep;
for(int i=;i<GG[u].size();i++)
{
int v=GG[u][i];
if(!d[v])
{
dfs(v,dep+);
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n+m==)break;
REP(i,,n){
G[i].clear();
P[i].clear();
}
edges.clear();
int a,b;
REP(i,,m)
{
scanf("%d%d",&a,&b);
Edge e;
e=Edge(a,b);
edges.push_back(e);
e=Edge(b,a);
edges.push_back(e);
int mm=edges.size();
G[a].push_back(mm-);
G[b].push_back(mm-);
}
find_bcc(n);
REP(i,,n)
{
GG[i].clear();
}
/*
for(int i=1;i<=n;i++)
{
printf("T[%d]=%d\n",i,T[i]);
}
*/
for(int i=;i<=n;i++)
{
for(int j=;j<P[i].size();j++)
{
int v=P[i][j];
if(T[i]!=T[v])
{
// printf("u=%d v=%d\n",T[i],T[v]);
GG[T[i]].push_back(T[v]);
}
}
}
CL(d,);
dfs(,);
int maxn=;
int flag=;
for(int i=;i<=bcc_cnt;i++)
{
if(d[i]>maxn)
{
maxn=d[i];
flag=i;
}
}
CL(d,);
dfs(flag,);
maxn=;
for(int i=;i<=bcc_cnt;i++)
{
if(d[i]>maxn)
maxn=d[i];
}
// printf("bcc_cnt=%d maxn=%d\n",bcc_cnt,maxn);
cout<<bcc_cnt-maxn<<endl;
}
return ;
}
hdu-4612-Warm up(边双连通分量--有重边)的更多相关文章
- HDU 4612 Warm up (边双连通分量+DP最长链)
[题意]给定一个无向图,问在允许加一条边的情况下,最少的桥的个数 [思路]对图做一遍Tarjan找出桥,把双连通分量缩成一个点,这样原图就成了一棵树,树的每条边都是桥.然后在树中求最长链,这样在两端点 ...
- HDU 4612 Warm up (边双连通分量+缩点+树的直径)
<题目链接> 题目大意:给出一个连通图,问你在这个连通图上加一条边,使该连通图的桥的数量最小,输出最少的桥的数量. 解题分析: 首先,通过Tarjan缩点,将该图缩成一颗树,树上的每个节点 ...
- HDU 4612 Warm up(双连通分量缩点+求树的直径)
思路:强连通分量缩点,建立一颗新的树,然后求树的最长直径,然后加上一条边能够去掉的桥数,就是直径的长度. 树的直径长度的求法:两次bfs可以求,第一次随便找一个点u,然后进行bfs搜到的最后一个点v, ...
- hdoj 4612 Warm up【双连通分量求桥&&缩点建新图求树的直径】
Warm up Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Su ...
- Hdu 4612 Warm up (双连通分支+树的直径)
题目链接: Hdu 4612 Warm up 题目描述: 给一个无向连通图,问加上一条边后,桥的数目最少会有几个? 解题思路: 题目描述很清楚,题目也很裸,就是一眼看穿怎么做的,先求出来双连通分量,然 ...
- HDU 4612——Warm up——————【边双连通分量、树的直径】
Warm up Time Limit:5000MS Memory Limit:65535KB 64bit IO Format:%I64d & %I64u Submit Stat ...
- HDU 4612 Warm up(2013多校2 1002 双连通分量)
Warm up Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Su ...
- hdu 4612 Warm up 双连通+树形dp思想
Warm up Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total S ...
- [HDOJ4612]Warm up(双连通分量,缩点,树直径)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4612 所有图论题都要往树上考虑 题意:给一张图,仅允许添加一条边,问能干掉的最多条桥有多少. 必须解决 ...
- HDU-4612 Warm up 边双连通分量+缩点+最长链
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4612 简单图论题,先求图的边双连通分量,注意,此题有重边(admin还逗比的说没有重边),在用targ ...
随机推荐
- 聊一聊Android 6.0的运行时权限
Android 6.0,代号棉花糖,自发布伊始,其主要的特征运行时权限就很受关注.因为这一特征不仅改善了用户对于应用的使用体验,还使得应用开发者在实践开发中需要做出改变. 没有深入了解运行时权限的开发 ...
- abc - zx
诛仙青云志 第26集 第25集 第24集 第23集 第22集 第21集 第20集 第19集 第18集 第17集 第16集 第15集 第14集 ...
- oracle数组定义与使用
定义固定长度的一维数组 type type_array is varray(10) of varchar2(20); 1.varray(10)表示定义长度为10的数组 2.varchar2(20)表示 ...
- atoi、stoi、strtoi区别
首先atoi和strtol都是c里面的函数,他们都可以将字符串转为int,它们的参数都是const char*,因此在用string时,必须调c_str()方法将其转为char*的字符串.或者atof ...
- 第三篇:python高级之生成器&迭代器
python高级之生成器&迭代器 python高级之生成器&迭代器 本机内容 概念梳理 容器 可迭代对象 迭代器 for循环内部实现 生成器 1.概念梳理 容器(container ...
- 自己动手写控件(模仿mvc htmlhelper的类)
自定义helper类,要求命名空间在 System.Web.Mvc之下,要求,静态类,静态方法,特殊生成对应html的返回字段, 传递Htmlhleper,返回特定类型 返回值是MvcHtmlStri ...
- dnw for linux: Ubuntu下可用,无需编译驱动,mini2440可用
1.安装所需库文件 sudo apt-get install libusb-dev 2.源代码如下 /* dnw2 linux main file. This depends on libusb. * ...
- 惠普 Compaq 6520s 无线开关打不开
问题描述:键盘上面的无线开关怎么按都打不开,始终是出于黄色的状态 解决方法:尝试恢复bios默认值测试: 开机不停点击F10进入bios,选择File选项,选择Restore Defaults-- ...
- winform(C#)拖拽实现获得文件路径
设置Form的AllowDrop为true private void Form1_DragDrop(object sender, DragEventArgs e) { ...
- javascript 之DOM篇
要怎么样的开场白才能使我有力气再更新学习进度呢?啊啊啊啊啊,表示好累啊~~~默念“棒棒棒,我最棒~”召唤精气神开总结敲字咯.哈哈哈. --------------------------------- ...