题意:有N 个点,M条边,加一条边,求割边最少。(有重边)

分析:先求双连通分量,缩点形成一个生成树,然后求这个的直径,割边-直径即是答案

因为有的图上可能有重边,这样不好处理。我们记录每条边的标号(一条无向边拆成的两条有向边标号相同)这样就能限制不走一样的边而能走重边!

// File Name: 1002.cpp
// Author: Zlbing
// Created Time: 2013年08月02日 星期五 18时16分10秒
#pragma comment(linker,"/STACK:102400000,102400000")
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
const int MAXN=2e5+; int n,m;
struct Edge{
int u,v;
Edge(){}
Edge(int a,int b){
u=a;
v=b;
}
};
vector<Edge> edges;
vector<int> G[MAXN];
vector<int> P[MAXN];
int dfs_clock,bcc_cnt;
int pre[MAXN];
int T[MAXN];
//fa为u的父亲边
//这样标识就可以走重边而不能走父亲边
int dfs1(int u,int fa)
{
int lowu=pre[u]=++dfs_clock;
for(int i=;i<G[u].size();i++)
{
int mm=G[u][i];
int v=edges[mm].v;
if(fa==(mm^))continue;
if(!pre[v])
{
int lowv=dfs1(v,mm);
lowu=min(lowu,lowv);
if(lowv>pre[u])
{
P[v].push_back(u);
P[u].push_back(v);
}
}
else if(pre[v]<pre[u])
{
lowu=min(pre[v],lowu);
}
}
return lowu;
}
void dfs2(int u,int fa)
{
T[u]=bcc_cnt;
for(int i=;i<G[u].size();i++)
{
int v=edges[G[u][i]].v;
bool f=true;
for(int j=;j<P[u].size();j++)
{
int vv=P[u][j];
if(v==vv)
{
f=false;break;
}
}
if(!f||T[v])continue;
dfs2(v,u);
}
}
void find_bcc(int n)
{
dfs_clock=,bcc_cnt=;
memset(pre,,sizeof(pre));
memset(T,,sizeof(T));
for(int i=;i<=n;i++)
if(!pre[i])
dfs1(i,-);
for(int i=;i<=n;i++)
if(!T[i])
{
bcc_cnt++;
dfs2(i,-);
}
}
vector<int> GG[MAXN];
int d[MAXN];
void dfs(int u,int dep)
{
d[u]=dep;
for(int i=;i<GG[u].size();i++)
{
int v=GG[u][i];
if(!d[v])
{
dfs(v,dep+);
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n+m==)break;
REP(i,,n){
G[i].clear();
P[i].clear();
}
edges.clear();
int a,b;
REP(i,,m)
{
scanf("%d%d",&a,&b);
Edge e;
e=Edge(a,b);
edges.push_back(e);
e=Edge(b,a);
edges.push_back(e);
int mm=edges.size();
G[a].push_back(mm-);
G[b].push_back(mm-);
}
find_bcc(n);
REP(i,,n)
{
GG[i].clear();
}
/*
for(int i=1;i<=n;i++)
{
printf("T[%d]=%d\n",i,T[i]);
}
*/
for(int i=;i<=n;i++)
{
for(int j=;j<P[i].size();j++)
{
int v=P[i][j];
if(T[i]!=T[v])
{
// printf("u=%d v=%d\n",T[i],T[v]);
GG[T[i]].push_back(T[v]);
}
}
}
CL(d,);
dfs(,);
int maxn=;
int flag=;
for(int i=;i<=bcc_cnt;i++)
{
if(d[i]>maxn)
{
maxn=d[i];
flag=i;
}
}
CL(d,);
dfs(flag,);
maxn=;
for(int i=;i<=bcc_cnt;i++)
{
if(d[i]>maxn)
maxn=d[i];
}
// printf("bcc_cnt=%d maxn=%d\n",bcc_cnt,maxn);
cout<<bcc_cnt-maxn<<endl;
}
return ;
}

hdu-4612-Warm up(边双连通分量--有重边)的更多相关文章

  1. HDU 4612 Warm up (边双连通分量+DP最长链)

    [题意]给定一个无向图,问在允许加一条边的情况下,最少的桥的个数 [思路]对图做一遍Tarjan找出桥,把双连通分量缩成一个点,这样原图就成了一棵树,树的每条边都是桥.然后在树中求最长链,这样在两端点 ...

  2. HDU 4612 Warm up (边双连通分量+缩点+树的直径)

    <题目链接> 题目大意:给出一个连通图,问你在这个连通图上加一条边,使该连通图的桥的数量最小,输出最少的桥的数量. 解题分析: 首先,通过Tarjan缩点,将该图缩成一颗树,树上的每个节点 ...

  3. HDU 4612 Warm up(双连通分量缩点+求树的直径)

    思路:强连通分量缩点,建立一颗新的树,然后求树的最长直径,然后加上一条边能够去掉的桥数,就是直径的长度. 树的直径长度的求法:两次bfs可以求,第一次随便找一个点u,然后进行bfs搜到的最后一个点v, ...

  4. hdoj 4612 Warm up【双连通分量求桥&&缩点建新图求树的直径】

    Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Su ...

  5. Hdu 4612 Warm up (双连通分支+树的直径)

    题目链接: Hdu 4612 Warm up 题目描述: 给一个无向连通图,问加上一条边后,桥的数目最少会有几个? 解题思路: 题目描述很清楚,题目也很裸,就是一眼看穿怎么做的,先求出来双连通分量,然 ...

  6. HDU 4612——Warm up——————【边双连通分量、树的直径】

    Warm up Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  7. HDU 4612 Warm up(2013多校2 1002 双连通分量)

    Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Su ...

  8. hdu 4612 Warm up 双连通+树形dp思想

    Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total S ...

  9. [HDOJ4612]Warm up(双连通分量,缩点,树直径)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4612 所有图论题都要往树上考虑 题意:给一张图,仅允许添加一条边,问能干掉的最多条桥有多少. 必须解决 ...

  10. HDU-4612 Warm up 边双连通分量+缩点+最长链

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4612 简单图论题,先求图的边双连通分量,注意,此题有重边(admin还逗比的说没有重边),在用targ ...

随机推荐

  1. 删除右键菜单的“用阿里旺旺发送此文件”项

    在运行对话框里的输入框内输入Regedit.exe,点击确定按钮就启动了注册表编辑器程序. 在注册表编辑器窗口左侧展开HKEY_CLASSES_ROOT\CLSID{0DE1378D-F811-40E ...

  2. Android 使用Android Studio + Gradle 或 命令行 进行apk签名打包

    官方文档:https://developer.Android.com/tools/publishing/app-signing.html 1. 默认为debug mode,使用的签名文件在: $HOM ...

  3. LiLei&HanMeiMei的隐式马尔可夫爱情

    一篇非常棒的隐马尔可夫入门文章...推荐! from: http://staffwww.dcs.shef.ac.uk/people/W.Liu/hmm.html

  4. Android中全局搜索(QuickSearchBox)详解

    http://blog.csdn.net/mayingcai1987/article/details/6268732 1. 标题: 应用程序如何全面支持搜索 2. 引言: 如果想让某个应用程序支持全局 ...

  5. 【SSMS增强工具】SQL Sharper 2014介绍

    产品介绍 SQL Sharper是一款SQL Server Management Studio插件,用于数据库对象快速查询.表结构查询.优化查询结果导出.代码生成等方面. 适用人群:T-SQL开发者. ...

  6. bash: ./configure: 权限不够 怎么办?

    configure没有执行权限 通过chmod给其加上x权限 chmod +x configure 再在该用户下执行 ./configure

  7. 通常我们使用[NSDate date]方法得到的时间与当前时间不一致,如何解决?

    NSDate *date = [NSDate date];    NSTimeZone *zone = [NSTimeZone systemTimeZone];    NSInteger interv ...

  8. 工厂方法模式(Factory Method)

    1.本质:延迟到子类来选择实现 2.示意图: 3.主要功能: 让父类在不知道具体实现的情况下,完成自身功能的调用 类似于注入 4.备注: 1.工厂方法中,通常父类是一个抽象类,里面包含创建对象的抽象工 ...

  9. vertical-align:top属性

    vertical-align这个是设置元素的垂直排列的. 用来定义行内元素的基线相对于该元素所在行的基线的垂直对齐. 它的值比较多:baseline | sub | super | top | tex ...

  10. phpcms get标签说明

    {pc:get sql="SELECT * FROM phpcms_member" cache="3600" page="$page" db ...