题目描述

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

输入输出格式

输入格式:

输入文件的第一行包含两个整数 n和p,含义如上所述。

输出格式:

输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。

输入输出样例

输入样例#1:

20 23 
输出样例#1:

16

说明

100%的数据中,1 ≤N ≤ 10^6, P≤ 10^9,p是一个质数。

画图发现树的形状是唯一的

且对于一个子树的根,一定小于所有子树节点

也就是说,对于一个根节点,只要考虑给左右子树划分的方案
可以列出dp方程:

f[i]=f[2*i]*f[2*i+1]*C(size[2*i],size[2*i+1]+size[2*i])

这题据说n会大于p,也就是说1~n会含有p

那么就不能线性求逆元

统计出i!中p出现的次数num[i]和不算p的倍数的阶乘fac[i]

算组合数时,如果num[y]-num[x]-num[y-x]不为0直接返回0

逆元直接把fac[]带入拓展欧几里德,因为在算fac时排除了p,所以可行

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lol;
lol f[],size[],p,num[],fac[],n;
lol exgcd(lol a,lol b,lol &x,lol &y)
{
if (b==)
{
x=;y=;
return a;
}
lol d=exgcd(b,a%b,x,y);
lol t=x;x=y;y=t-(a/b)*y;
return d;
}
lol reverse(lol a)
{
lol x,y;
exgcd(a,p,x,y);
return (x%p+p)%p;
}
lol C(int x,int y)
{
lol ap=num[y],bp=num[x],cp=num[y-x];
if (ap-bp-cp) return ;
lol s=(fac[y]*reverse(fac[x])%p)*reverse(fac[y-x])%p;
return s;
}
void dfs_dp(int x)
{
f[x]=;
size[x]=;
if (*x<=n)
dfs_dp(*x);
if (*x+<=n)
dfs_dp(*x+);
if (*x<=n)
if (*x+>n||size[*x+]==)
{
f[x]=f[*x];
size[x]+=size[*x];
}
else
{
f[x]=((f[*x]*f[*x+]%p)*C(size[*x],size[*x]+size[*x+])%p)%p;
size[x]+=size[*x]+size[*x+];
}
}
int main()
{int i;
cin>>n>>p;
fac[]=;
for (i=;i<=n;i++)
{
int x=i;
num[i]=num[i-];
while (x%p==)
{
num[i]++;
x/=p;
}
if (i%p==) fac[i]=fac[i-];
else fac[i]=fac[i-]*i%p;
}
dfs_dp();
cout<<f[];
}

[ZJOI2010]排列计数的更多相关文章

  1. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  2. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  3. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  4. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  5. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

  6. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  7. BZOJ2111:[ZJOI2010]排列计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...

  8. bzoj2111 [ZJOI2010]排列计数

    Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic ...

  9. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

随机推荐

  1. SQLAlchemy 教程 —— 基础入门篇

    SQLAlchemy 教程 -- 基础入门篇 一.课程简介 1.1 实验内容 本课程带领大家使用 SQLAlchemy 连接 MySQL 数据库,创建一个博客应用所需要的数据表,并介绍了使用 SQLA ...

  2. linux 50个常用命令

    1.ls命令 ls是list的缩写,常用命令为ls(显示出当前目录列表),ls -l(详细显示当前目录列表),ls -lh(人性化的详细显示当前目录列表),ls -a(显示出当前目录列表,包含隐藏文件 ...

  3. bzoj千题计划274:bzoj3779: 重组病毒

    http://www.lydsy.com/JudgeOnline/problem.php?id=3779 有一棵树,初始每个节点有不同的颜色 操作1:根节点到x的路径上的点 染上一种没有出现过的颜色 ...

  4. ThreadLocal就是这么简单

    前言 今天要研究的是ThreadLocal,这个我在一年前学习JavaWeb基础的时候接触过一次,当时在baidu搜出来的第一篇博文ThreadLocal,在评论下很多开发者认为那博主理解错误,给出了 ...

  5. VS Code 常用命令记录

    1. 创建解决方案 例:dotnet new sln -o HelloWorld.Solutions 其中 -o 表示输出文件夹 2.创建类库.web.mvc.webapi等项目 例:dotnet n ...

  6. JAVA_SE基础——68.RunTime类

    RunTime类代表Java程序的运行时环境,每一个Java程序都有一个与之对应的Runtime实例,应用程序通过该对象与运行时环境相连,应用程序不能创建自己的Runtime实例,但可以通过getRu ...

  7. typescript简介

    微软作为编译器狂魔一直有一个心病,就是改良JavaScript这种语法超级烂又很多人用的编程语言,于是TypeScript诞生了 先做个对比吧:   TS JS 语法严谨性 严谨 宽松 静态性 静态 ...

  8. selenium的Python使用(一)浏览器驱动的安装及使用

    一.selenium的安装 直接使用pip进行安装 pip install selenium    #(安装最新版本) pip install selenium==3.6.0   #(安装指定版本) ...

  9. 求解数独难题, Sudoku问题(回溯)

    Introduction : 标准的数独游戏是在一个 9 X 9 的棋盘上填写 1 – 9 这 9 个数字,规则是这样的: 棋盘分成上图所示的 9 个区域(不同颜色做背景标出,每个区域是 3 X 3 ...

  10. GIT入门笔记(3)- git中的一些概念和原理

    一.git管理过程中所处的4个阶段: 工作目录(workspace) 暂存区(index) 本地仓库(local repository) 远程仓库(remote repository) 二.工作目录+ ...