Description

求有多少种长度为 n 的序列 A,满足以下条件:

1 ~ n 这 n 个数在序列中各出现了一次

若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的

满足条件的序列可能很多,序列数对 10^9+7 取模。

Solution

答案是:\(C(n,m)*D(n-m)\)

\(D(n)\) 是长度为\(n\)的错排的方案数

\(D(n)=n!*(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+(-1)^n\frac{1}{n!})\)

或者 \(D(n)=(n-1)*(D(n-1)+D(n-2))\)

递推求出来即可

#include<bits/stdc++.h>
using namespace std;
const int N=1000005,mod=1e9+7;
int Fac[N],D[N],T,inv[N],n,m,Inv[N];
inline int C(int a,int b){return 1ll*Fac[a]*Inv[b]%mod*Inv[a-b]%mod;}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
scanf("%d",&T);
Fac[0]=D[0]=Fac[1]=inv[0]=inv[1]=Inv[0]=Inv[1]=1;
for(int i=2;i<N;i++){
Fac[i]=1ll*Fac[i-1]*i%mod;
inv[i]=(-1ll*(mod/i)*inv[mod%i]%mod+mod)%mod;
Inv[i]=1ll*Inv[i-1]*inv[i]%mod;
D[i]=(D[i-1]+(i&1?-1:1)*Inv[i])%mod;
if(D[i]<0)D[i]+=mod;
}
for(int i=0;i<N;i++)D[i]=1ll*D[i]*Fac[i]%mod;
while(T--){
scanf("%d%d",&n,&m);
printf("%lld\n",1ll*D[n-m]*C(n,m)%mod);
}
return 0;
}

4517: [Sdoi2016]排列计数的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  2. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  3. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  4. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  5. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  6. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  7. Bzoj 4517: [Sdoi2016]排列计数(排列组合)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...

  8. BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...

  9. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

随机推荐

  1. Beta冲刺第一天

    一.昨天的困难 Beta阶段第一天,主要进行本阶段的计划和任务分配,主要问题是上阶段所做的测试工作较少,本阶段需要加强测试工作,并不断修复检测出来的BUG. 二.今天进度 所有成员写简单测试测试整体应 ...

  2. python 归并排序

    def merge_sort(alist): if len(alist) <= 1: return alist # 二分分解 num = len(alist)/2 left = merge_so ...

  3. 小草手把手教你LabVIEW串口仪器控制—安装使用仪器现有驱动

    声明:很多仪器是没有驱动的.所以,具体问题具体分析.另外声明:所谓的驱动,也就是封装好的底层的串口通信程序,也是程序而已,只不过别人帮你做成了子 VI,让自己容易用.所以:不要弄混淆了概念.国外的很多 ...

  4. Beta冲刺Day1

    项目进展 李明皇 今天解决的进度 点击首页list相应条目将信息传到详情页 明天安排 优化信息详情页布局 林翔 今天解决的进度 前后端连接成功 明天安排 开始微信前端+数据库写入 孙敏铭 今天解决的进 ...

  5. zookeeper提示Unable to read additional data from server sessionid 0x

    配置zookeeper集群,一开始配置了两台机器server.1和server.2. 配置参数,在zoo.cfg中指定了整个zookeeper集群的server编号.地址和端口: server.1=1 ...

  6. OO第一次阶段性总结

    经过三次作业的历练之后终于来到了写博客这一周.回顾开学来的这一个月,令我印象最深刻也是最累的一门课就是OO了.虽然上学期学过一部分Java,但这学期开学就来的OO作业还是让我在第二周就开始熬夜了.不过 ...

  7. Oracle RAC环境下定位并杀掉最终阻塞的会话

    实验环境:Oracle RAC 11.2.0.4 (2节点) 1.模拟故障:会话被级联阻塞 2.常规方法:梳理找出最终阻塞会话 3.改进方法:立即找出最终阻塞会话 之前其实也写过一篇相关文章: 如何定 ...

  8. 机器学习中的K-means算法的python实现

    <机器学习实战>kMeans算法(K均值聚类算法) 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行 ...

  9. Solaris 11 system package 安装与更新(如:assembler)

    最近在VirtualBox虚拟机中导入了Solaris 11.3.在里面安装Oracle数据库时,先行条件检查没通过,提示缺少程序包assembler. 在网上看了许多,这方面的信息还比较少.最后在O ...

  10. Python内置函数(35)——next

    英文文档: next(iterator[, default]) Retrieve the next item from the iterator by calling its __next__() m ...