Time Limit: 5000 ms Memory Limit: 512 MB

description

给你\(n, m\),求\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} lcm(i,j)\)

答案对100000009取模。

多组数据。

input

第一行有一个正整数tt表示数据组数

接下来tt行每行有两个正整数n,mn,m

output

tt行,第ii行为第ii组询问的答案。

sample input

1
4 5

sample output

122

HINT

对于100%的数据:\(t≤10000,n,m≤10^7\)

\(100000009\)不是一个质数。


solution

做了几题之后感觉。。推起来稍微顺手一点不对顺脑一点了qwq?

(结果这题还是做了很久嗯qwq)

首先还是先写式子咯

\[\begin{aligned}
ans&=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} lcm(i,j)\\
&=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{ij}{gcd(i,j)}&(抱歉lcm你长得太丑了)\\
&=\sum\limits_{k=1}^{min(n,m)}k\sum\limits_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{k}\rfloor}ij[gcd(i,j)=1]\\
\\
&这里的话稍微说明一下,我们枚举i和j的gcd(记为k)\\&然后原来的i可以表示为i_0*k,原来的j表示为j_0*k,\\&\frac{ij}{gcd(i,j)}就变成了i_0*j_0*k,所以就变成了上面那样\\
\\
&=\sum\limits_{k=1}^{min(n,m)}k\sum\limits_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{k}\rfloor}ij\sum\limits_{d|i,d|j}\mu(d)&(\sum\limits_{d|gcd(i,j)}\mu(d)=[gcd(i,j)=1])\\
&=\sum\limits_{k=1}^{min(n,m)}k\sum\limits_{d=1}^{min(\lfloor \frac{n}{k}\rfloor,\lfloor \frac{m}{k}\rfloor)}\mu(d)\sum\limits_{i=1}^{\lfloor \frac{n}{k}\rfloor}i[d\mid i]\sum\limits_{j=1}^{\lfloor \frac{m}{k}\rfloor}j[d\mid j]\\
\\
&观察一下\sum\limits_{i=1}^{\lfloor \frac{n}{k}\rfloor}i[d\mid i],会发现其实这个式子求的就是1到\lfloor \frac{n}{k}\rfloor范围内d的倍数的和\\
\\
&=\sum\limits_{k=1}^{min(n,m)}k\sum\limits_{d=1}^{min(\lfloor \frac{n}{k}\rfloor,\lfloor \frac{m}{k}\rfloor)}\mu(d) (sum(\lfloor \frac{n}{kd}\rfloor)d)(sum(\lfloor \frac{m}{kd}\rfloor)d)&(sum(n)=\sum\limits_{i=1}{n}=\frac{n(n+1)}{2})\\
&=\sum\limits_{T=1}^{min(n,m)}sum(\lfloor \frac{n}{T}\rfloor)sum(\lfloor \frac{m}{T}\rfloor)\sum\limits_{d\mid T}\mu(d)d^2 \frac{T}{d}&(T = kd)
\end{aligned}
\]

化到这一步,我们发现前面的\(sum\)的部分可以直接分块根号搞定(bzoj2820)

后面的东西看起来十分眼熟啊,我们令\(g(x)=\sum\limits_{d\mid x}\mu(d)d^2 \frac{x}{d}\),令\(f(x)=\sum\limits_{d|x}d^2\mu(d)\),令\(h(x)=x\)

那么\(g(x) = \sum\limits_{d\mid x}f(d)h(\frac{x}{d})\),然后由于\(f(d)\)和\(h(\frac{x}{d})\)都是积性函数,所以\(g(x)\)也是积性函数

考虑怎么求\(g(x)\)

我们考虑把这个东西筛出来,按着线性筛的思路来分析一下,求解\(g(x)\)的值

如果说\(x\)为质数,那么显然\(g(x) = x - x^2\)

如果\(x\)不为质数,我们设\(x = i * p\),其中\(p\)为质数,那么有两种情况

  1. \(p \nmid i\) ,由于\(i\)和\(p\)互质而\(g(x)\)为积性函数,\(g(x) = g(i*p) = g(i) * g(p)\)

  2. \(p\mid i\),这个时候就有点。。不是很好搞了。。

    我们可以把\(i\)表示为\(t * p^k\)(\(t\)与\(p\)互质)

    那么我们就尝试一下从乘了一个\(p\)会有什么影响这个方面来考虑一下

    考虑\(g(p^k)\)的值,显然根据\(\mu\)的定义,只有\(\mu(1)\)和\(\mu(p)\)能够提供贡献(其他的\(p\)的指数都>1,所以都是0)

    那么我们就可以得到\(g(p^k) = f(1)p^{k} + f(p)p^{k-1}\)

    然后写出\(g(p^{k+1})\)的表达式,会发现是\(f(1)p^{k+1} + f(p)p^{k}\)

    也就是说\(g(p^{k+1}) = g(p^k) p\)

    那么就可以得到\(g(x) = g(i * p) = g(t * p^k *p) = g(t) * g(p^{k}) * p = g(x) * p\)

然后就可以顺利筛出来啦

那这题好像就十分愉快地做完了ovo


#include<iostream>
#include<cstdio>
#include<cstring>
#define MOD 100000009
#define ll long long
using namespace std;
const int MAXN=1e7+10;
ll p[MAXN],g[MAXN],s[MAXN];
bool vis[MAXN];
int ans;
int n,m,T,pos,tmp;
int prework(int n); int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d",&T);
prework(10000000);
for (int o=1;o<=T;++o){
scanf("%d%d",&n,&m);
if (n>m) swap(n,m);
pos=ans=0;
for (int i=1;i<=n;i=pos+1){
pos=min(n/(n/i),m/(m/i));
ll tmp=(s[n/i]*s[m/i]%MOD*(g[pos]-g[i-1])%MOD)%MOD;
ans=((ll)ans+tmp+MOD)%MOD;
}
printf("%d\n",ans);
}
} int prework(int n){
g[1]=1; s[1]=1;
int cnt=0;
memset(vis,false,sizeof(vis));
for (int i=2;i<=n;++i){
s[i]=(ll)i*(i+1)/2%MOD;
if (!vis[i]){
g[i]=(i-(ll)i*i%MOD+MOD)%MOD;
p[++cnt]=i;
}
for (int j=1;j<=cnt&&i*p[j]<=n;++j){
vis[i*p[j]]=true;
if (i%p[j])
g[i*p[j]]=g[i]*g[p[j]]%MOD;
else{
g[i*p[j]]=g[i]*p[j]%MOD;
break;
}
}
}
for (int i=1;i<=n;++i)
g[i]=(g[i]+g[i-1])%MOD;
}

【BZOJ2693】jzptab的更多相关文章

  1. 【BZOJ2693】jzptab(莫比乌斯反演)

    [BZOJ2693]jzptab(莫比乌斯反演) 题面 讨厌权限题,只能跑到别的OJ上交 和这题是一样的 多组数据 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 前 ...

  2. 【BZOJ2693】jzptab & 【BZOJ2154】Crash的数字表格

    题目 弱化版题目的传送门([BZOJ2154]Crash的数字表格) 加强版题目的传送门([BZOJ2693]jzptab) 思路&解法 题目是要求: \(\sum\limits_{i = 1 ...

  3. 【BZOJ2693】jzptab [莫比乌斯反演]

    jzptab Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description   求 Input 第一行一个 ...

  4. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  5. 【BZOJ2693】jzptab (莫比乌斯反演)

    Description 给你$n$,$m$,求 $\sum^n_{i=1} \sum^m_{j=1} \ lcm(x,y)$ 答案对$100000009$取模. 多组数据. Input 第一行有一个正 ...

  6. 【BZOJ】【2693】JZPTAB

    莫比乌斯反演 PoPoQQQ讲义第5题,是BZOJ 2154的升级版(多次询问) 题解:http://blog.csdn.net/popoqqq/article/details/42078725 WA ...

  7. 【BZOJ 2693】jzptab(莫比乌斯+分块)

    2693: jzptab Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample I ...

  8. 【BZOJ】2693: jzptab 莫比乌斯反演

    [题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...

  9. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

随机推荐

  1. ORACLE数据库SQL优化 not in 与not exits

    各个表的数据量: sys_file_convert_queue 65989sys_att_file 73061sys_att_main 84405sys_att_rtf_data 1507 优化前,执 ...

  2. CodeFirst+MySQL+.Net Core配置详情

    EF 基础操作:http://www.cnblogs.com/M-LittleBird/p/5852395.html 一.使用CodeFirst模式 1.在需要添加的项目上右键点击选择添加ADD.NE ...

  3. 关于HTTP,你知道哪些?

    HTTP简介 HTTP 的全称是 Hypertext Transfer Protocol,超文本传输协议 规定客户端和服务器之间的数据传输格式 让客户端和服务器能有效地进行数据沟通 HTTP 协议是网 ...

  4. PHP实现水印效果(文字、图片)

    第一种 <?php /** * 功能:给一张图片加上水印效果 * $i 要加水印效果的图片 * $t 水印文字 * $size 文字大小 * $pos 水印的位置 * $color 文字的颜色 ...

  5. filter-api文档

    git地址:https://github.com/jiqianqin/filters 不断优化中,欢迎加入讨论- filter-tags 效果图: 参数 说明 格式 备注 data 展示的数据 [{ ...

  6. Hive分区表动态添加字段

    场景描述: 公司埋点项目,数据从接口服务写入kafka集群,再从kafka集群消费写入HDFS文件系统,最后通过Hive进行查询输出.这其中存在一个问题就是:埋点接口中的数据字段是变化,后续会有少量字 ...

  7. 3.1 if 条件分支语句

    Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块. 获取条件语句的执行结果的过程就是真假值判断 #首先需要说明在Python中 #假值(False):0. ...

  8. UVA - 1631 Locker 记忆化搜索

    题意:给定两个密码串,每次可以让1~3个相邻的密码向上或者向下滚动,每个密码是 ,问最少需要多少次滚动可以让原串成为目标串? 思路:假设当前要让第i位密码还原,我们可以同时转动,不同的转动方式会影响后 ...

  9. 洛谷P3796 - 【模板】AC自动机(加强版)

    原题链接 Description 模板题啦~ Code //[模板]AC自动机(加强版) #include <cstdio> #include <cstring> int co ...

  10. Linux下用户和组管理

    用户与组之间的关系是,组下面有若干个用户,每个用户必须从属于唯一一个组.组可以理解为权限的集合.用户管理的命令有:useradd, userdel, usermod, passwd, chsh, ch ...