题目描述(权限题qwq)

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

输入格式

一行两个整数N,K

输出格式

一行为答案

样例输入:

3 2

样例输出:

6

因为集合中的元素是无序的,所以我们随便选\(k\)个作为交集,最后把答案乘上\(\begin{pmatrix}n\\ k\end{pmatrix}\)就好了。选出来\(k\)个之后,问题转化为在\(n-k\)个元素中选若干个集合,使它们的交集为空集。没有交集为空集的限制条件的话答案为\(2^{2^{n-k}}\)(可以这么理解:先选出来一些集合,再决定哪个集合选不选)。直接求不好求,考虑容斥,答案即为\(\sum\limits_{i=0}^{n-k}(-1)^i\begin{pmatrix}n-k\\ i\end{pmatrix}2^{2^{n-k-i}}\)。预处理\(2^{2^{p}}\)需要一些技巧,就是\(2^{2^{p+1}}=(2^{2^{p}})^2\)。
代码的坑找个时间再填...

BZOJ2839 集合计数 容斥的更多相关文章

  1. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  2. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  3. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  4. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  5. bzoj2839 集合计数(容斥+组合)

    集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...

  6. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  7. [BZOJ2839]:集合计数(组合数学+容斥)

    题目传送门 题目描述 .(是质数喔~) 输入格式 一行两个整数N,K. 输出格式 一行为答案. 样例 样例输入: 3 2 样例输出: 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB, ...

  8. bzoj2839 集合计数 组合计数 容斥原理|题解

    集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...

  9. 2019.02.09 bzoj2839: 集合计数(容斥原理)

    传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk​种方案 ...

随机推荐

  1. 初学Linux要掌握的命令

    echo:打印,或者直接输出指定的字符串 语法:echo (选项) (参数) 选项:/a: 发出警告声 /b: 删除前一个字符 /c: 最后不加上换行符号 /f: 换行但光标仍旧停留在原来的位置 /n ...

  2. 亿级流量场景下,大型架构设计实现【全文检索高级搜索---ElasticSearch篇】-- 中

    1.Elasticsearch的基础分布式架构: 1.Elasticsearch对复杂分布式机制的透明隐藏特性2.Elasticsearch的垂直扩容与水平扩容3.增减或减少节点时的数据rebalan ...

  3. Your project path contains non-ASCII characters

    Android studio导入project时报错 non-ASCII characters意味着中文字符报错,解决方法简单有效: 检查项目路径中是否出现中文名,将中文字符修改成英文就可以解决辽~

  4. 如何去掉(隐藏)系统的StatusBar(状态栏)

         在定制TV版本中,经常需要去掉StatusBar的需求,那么如何更好更方便的去掉StatusBar呢?         StatusBar是Android系统中重要的组成部分,可以看到一些提 ...

  5. K邻近回归算法

    代码: # -*- coding: utf-8 -*- """ Created on Fri Jul 13 10:40:22 2018 @author: zhen &qu ...

  6. nginx性能优化(针对于高并发量仅供参考,并不是方案)

    目录 关于nginx.conf中的优化 配置nginx客户端网页缓存本地时间 nginx日志切割 nginx连接超时优化 Nginx 实现网页压缩功能 Nginx 实现防盗链功能 为目录添加访问控制 ...

  7. Redis与Memocache的区别

    转载地址:http://gnucto.blog.51cto.com/3391516/998509 Redis与Memcached的区别 传统MySQL+ Memcached架构遇到的问题 实际MySQ ...

  8. SQLServer之多表联合查询

    多表联合查询简介 定义:连接查询是关系型数据库最主要的查询,通过连接运算符可以实现多个表连接数据查询. 分类:内连接,外连接,全外连接. 内连接 定义 内联接使用比较运算符根据每个表的通用列中的值匹配 ...

  9. Python 之网络式编程

    一 客户端/服务器架构 即C/S架构,包括 1.硬件C/S架构(打印机) 2.软件B/S架构(web服务) C/S架构与Socket的关系: 我们学习Socket就是为了完成C/S的开发 二 OSI七 ...

  10. About A Scam

    事件起因 本篇记录一个我遇到一个诈骗故事. 这两年我陆续有收到邮件,内容为有一大笔遗产我可以继承,让我提供银行卡号,身份证号相关信息. 后面邮件的内容就变为,有一笔公益款项,可以用我名义去管理,让我提 ...