Description

The stable marriage problem consists of matching members of two different sets according to the member’s preferences for the other set’s members. The input for our problem consists of:

  • a set M of n males;
  • a set F of n females;
  • for each male and female we have a list of all the members of the opposite gender in order of preference (from the most preferable to the least).

A marriage is a one-to-one mapping between males and females. A marriage is called stable, if there is no pair (m, f) such that f ∈ F prefers m ∈ M to her current partner and m prefers f over his current partner. The stable marriage A is called male-optimal if there is no other stable marriage B, where any male matches a female he prefers more than the one assigned in A.

Given preferable lists of males and females, you must find the male-optimal stable marriage.

Input

The first line gives you the number of tests. The first line of each test case contains integer n (0 < n < 27). Next line describes n male and n female names. Male name is a lowercase letter, female name is an upper-case letter. Then go n lines, that describe preferable lists for males. Next n lines describe preferable lists for females.

Output

For each test case find and print the pairs of the stable marriage, which is male-optimal. The pairs in each test case must be printed in lexicographical order of their male names as shown in sample output. Output an empty line between test cases.

Sample Input

2
3
a b c A B C
a:BAC
b:BAC
c:ACB
A:acb
B:bac
C:cab
3
a b c A B C
a:ABC
b:ABC
c:BCA
A:bac
B:acb
C:abc

Sample Output

a A
b B
c C a B
b A
c C

题解

$Gale-Shapley$ 模板,可以去 Matrix67的博客 里学。

 //It is made by Awson on 2018.1.17
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
using namespace std;
const int N = ;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(int x) {
if (x > ) write(x/);
putchar(x%+);
} int couple, malelike[N+][N+], femalelike[N+][N+];
int malechoice[N+], femalechoice[N+];
char ch[N+];
queue<int>freemale; void work() {
read(couple);
for (int i = ; i < couple; i++) {
scanf("%s", ch);
freemale.push(ch[]-'a');
}
for (int i = ; i < couple; i++) {
scanf("%s", ch);
}
for (int i = ; i < couple; i++) {
scanf("%s", ch);
for (int j = ; j < +couple; j++)
malelike[i][j-] = ch[j]-'A';
}
for (int i = ; i < couple; i++) {
scanf("%s", ch);
for (int j = ; j < +couple; j++)
femalelike[i][ch[j]-'a'] = couple-(j-);
femalelike[i][couple] = -;
}
for (int i = ; i < couple; i++) {
malechoice[i] = , femalechoice[i] = couple;
}
while (!freemale.empty()) {
int male = freemale.front(), female = malelike[male][malechoice[male]];
if (femalelike[female][male] > femalelike[female][femalechoice[female]]) {
freemale.pop();
if (femalechoice[female] != couple) {
malechoice[femalechoice[female]]++; freemale.push(femalechoice[female]);
}
femalechoice[female] = male;
}else malechoice[male]++;
}
for (int i = ; i < couple; i++) printf("%c %c\n", i+'a', malelike[i][malechoice[i]]+'A');
}
int main() {
int t; read(t);
while (t--) {work(); if (t) putchar('\n'); }
return ;
}

[POJ 3487]The Stable Marriage Problem的更多相关文章

  1. POJ 3487 The Stable Marriage Problem(稳定婚姻问题 模版题)

    Description The stable marriage problem consists of matching members of two different sets according ...

  2. poj 3478 The Stable Marriage Problem 稳定婚姻问题

    题目给出n个男的和n个女的各自喜欢对方的程度,让你输出一个最佳搭配,使得他们全部人的婚姻都是稳定的. 所谓不稳婚姻是说.比方说有两对夫妇M1,F1和M2,F2,M1的老婆是F1,但他更爱F2;而F2的 ...

  3. 【转】稳定婚姻问题(Stable Marriage Problem)

    转自http://www.cnblogs.com/drizzlecrj/archive/2008/09/12/1290176.html 稳定婚姻是组合数学里面的一个问题. 问题大概是这样:有一个社团里 ...

  4. 【POJ 3487】 The Stable Marriage Problem (稳定婚姻问题)

    The Stable Marriage Problem   Description The stable marriage problem consists of matching members o ...

  5. The Stable Marriage Problem

    经典稳定婚姻问题 “稳定婚姻问题(The Stable Marriage Problem)”大致说的就是100个GG和100个MM按照自己的喜欢程度给所有异性打分排序.每个帅哥都凭自己好恶给每个MM打 ...

  6. HDOJ 1914 The Stable Marriage Problem

    rt 稳定婚姻匹配问题 The Stable Marriage Problem Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 6553 ...

  7. 【HDU1914 The Stable Marriage Problem】稳定婚姻问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1914 题目大意:问题大概是这样:有一个社团里有n个女生和n个男生,每位女生按照她的偏爱程度将男生排序, ...

  8. 【HDOJ】1914 The Stable Marriage Problem

    稳定婚姻问题,Gale-Shapley算法可解. /* 1914 */ #include <iostream> #include <sstream> #include < ...

  9. 尺取法 POJ 3320 Jessica's Reading Problem

    题目传送门 /* 尺取法:先求出不同知识点的总个数tot,然后以获得知识点的个数作为界限, 更新最小值 */ #include <cstdio> #include <cmath> ...

随机推荐

  1. 云计算之路-阿里云上-容器难容:优化自建 docker swarm 集群的部署

    在上周六遭遇阿里云容器服务 swarm 版的故障之后,我们决定还是走自建 docker swarm 之路,只要不是阿里云底层的问题,我们相信会找到办法解决或避开自建 docker swarm 不稳定的 ...

  2. 敏捷冲刺每日报告一(Java-Team)

    第一天报告(10.25  周三) 团队:Java-Team 成员: 章辉宇(284) 吴政楠(286) 陈阳(PM:288) 韩华颂(142) 胡志权(143) github地址:https://gi ...

  3. 201621123057 《Java程序设计》第7周学习总结

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 1.2 可选:使用常规方法总结其他上课内容. 2.书面作业 1. GUI中的事件处理 1.1 写出事件处理模型中最重要的几个关键词. 答: ...

  4. TSP-旅行商问题

    #include <iostream> #include <vector> #include <algorithm> using namespace std; in ...

  5. nyoj 复杂度

    复杂度 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 for(i=1;i<=n;i++) for(j=i+1;j<=n;j++) for(k=j+1;k ...

  6. LeetCode & Q217-Contains Duplicate-Easy

    Array Hash Table Description: Given an array of integers, find if the array contains any duplicates. ...

  7. DSkin 的WebUI开发模式介绍,Html快速开发Winform的UI

    新版WebUI开发模式采用MiniBlink内核,这个内核功能更完善,dll压缩之后才5M,而且提供开发者功能,内核还在更新中,而且是开源项目:https://github.com/weolar/mi ...

  8. Mego开发文档 - 数据库建模

    数据库建模 我们还提供了一些其他的特性,用于定制化数据库对应的数据结构. 表映射 框架默认会使用CLR类型名称做为实际数据库的表名,当两者不一致时可以使用该特性强制表名称. [Table(" ...

  9. kubernetes入门(07)kubernetes的核心概念(4)

    一.pod 二.Volume volume可以为容器提供持久化存储,比如 三.私有镜像 在使用私有镜像时,需要创建一个docker registry secret,并在容器中引用.创建docker r ...

  10. Linux知识积累(6) 系统目录及其用途

    linux系统常见的重要目录以及各个目作用:/ 根目录.包含了几乎所有的文件目录.相当于中央系统.进入的最简单方法是:cd /./boot引导程序,内核等存放的目录.这个目录,包括了在引导过程中所必需 ...