【BZOJ1934】善意的投票(网络流)

题面

Description

幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。 我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?

Input

第一行只有两个整数n,m,保证有2≤n≤300,1≤m≤n(n-1)/2。其中n代表总人数,m代表好朋友的对数。文件第二行有n个整数,第i个整数代表第i个小朋友的意愿,当它为1时表示同意睡觉,当它为0时表示反对睡觉。接下来文件还有m行,每行有两个整数i,j。表示i,j是一对好朋友,我们保证任何两对i,j不会重复。

Output

只需要输出一个整数,即可能的最小冲突数。

Sample Input

3 3

1 0 0

1 2

1 3

3 2

Sample Output

1

HINT

在第一个例子中,所有小朋友都投赞成票就能得到最优解

题解

每个小朋友投同意或者反对

相当于把小朋友们割为两块

那么,考虑最小割

首先,分别将同意和反对的与源点或者汇点连边

如果违反自己意愿,则相当于与这个点割开

同时,每个点与自己的朋友连边

如果割开,相当于与朋友意见不同

最后解决最小割,即求最大流

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 500
#define MAXL 200000
#define INF 20000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w;
}e[MAXL];
int h[MAX],cnt;
int ans,S,T,n,m;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};
h[v]=cnt++;
}
int level[MAX];
int cur[MAX];
bool BFS()
{
memset(level,0,sizeof(level));
level[S]=1;
queue<int> Q;
Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&!level[v])
level[v]=level[u]+1,Q.push(v);
}
}
return level[T];
}
int DFS(int u,int flow)
{
if(flow==0||u==T)return flow;
int ret=0;
for(int &i=cur[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&level[v]==level[u]+1)
{
int dd=DFS(v,min(flow,e[i].w));
flow-=dd;ret+=dd;
e[i].w-=dd;e[i^1].w+=dd;
}
}
return ret;
}
int Dinic()
{
int ret=0;
while(BFS())
{
for(int i=S;i<=T;++i)cur[i]=h[i];
ret+=DFS(S,INF);
}
return ret;
}
int main()
{
memset(h,-1,sizeof(h));
n=read();m=read();
S=0,T=n+1;
for(int i=1;i<=n;++i)
{
int k=read();
if(k)Add(S,i,1);
else Add(i,T,1);
}
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v,1);Add(v,u,1);
}
printf("%d\n",Dinic());
return 0;
}

【BZOJ1934】善意的投票(网络流)的更多相关文章

  1. [洛谷P2057][bzoj1934]善意的投票(最大流)

    题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来 ...

  2. 洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流

    正解:网络流 解题报告: 传送门! $umm$看到每个人要么0要么1就考虑最小割呗,,,? 然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了 所以考虑开一排点分别表示每个人,然后$S$表 ...

  3. [bzoj1934]善意的投票

    最小割,考虑最小割就是要将整张图分为两块,本题中就分别表示赞同和不赞同,那么首先一开始赞同的点向S连边,不赞同的点向T连边,如果这些点分到了另一边就要割掉这条边,朋友关系同理,连双向边同样表示分到两边 ...

  4. BZOJ-1934 Vote 善意的投票 最大流+建图

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1551 Solved: 951 [Submit][S ...

  5. 【BZOJ2768】[JLOI2010]冠军调查/【BZOJ1934】[Shoi2007]Vote 善意的投票 最小割

    [BZOJ2768][JLOI2010]冠军调查 Description 一年一度的欧洲足球冠军联赛已经进入了淘汰赛阶段.随着卫冕冠军巴萨罗那的淘汰,英超劲旅切尔西成为了头号热门.新浪体育最近在吉林教 ...

  6. bzoj1934 Vote 善意的投票 最小割(最大匹配)

    题目传送门 题目大意:很多小朋友,每个小朋友都有自己的立场,赞成或者反对,如果投了和自己立场不同的票会得到一个能量.又有很多朋友关系,如果一个人和他的一个朋友投的票不同,也会得到一个能量,现在问,通过 ...

  7. [bzoj1934/2768][Shoi2007]Vote 善意的投票_最小割

    Vote 善意的投票 bzoj-1934 Shoi-2007 题目大意:题目链接. 注释:略. 想法: 这是最小割的一个比较基本的模型. 我们将所有当前同意的小朋友连向源点,边权为1.不容易的连向汇点 ...

  8. C++之路进阶——bzoj1934(善意的投票)

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser  hyxzc Logout 捐赠本站 Notice:由于本OJ建立在 ...

  9. bzoj1934: [Shoi2007]Vote 善意的投票

    最大流..建图方式都是玄学啊.. //Dinic是O(n2m)的. #include<cstdio> #include<cstring> #include<cctype& ...

随机推荐

  1. qt 移植到开发板

    一.准备工作: 1.QT应用程序 2.工具链--->交叉工具链一安装,就会有标准的c库 3.扩展的第三方库(ARM)()触摸屏库(tslib.tar.gz) 4.QT库 二.使用交叉工具链编译t ...

  2. iOS开发中UIPopoverController的使用详解

    这篇文章主要介绍了iOS开发中UIPopoverController的使用,代码基于传统的Objective-C,需要的朋友可以参考下 一.简单介绍 1.什么是UIPopoverController ...

  3. 洛谷P3369 【模板】普通平衡树(Treap/SBT)

    洛谷P3369 [模板]普通平衡树(Treap/SBT) 平衡树,一种其妙的数据结构 题目传送门 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 插入x数 删除 ...

  4. Centos环境下给PHP7.0安装yaf扩展

    首先要知道PHP的安装目录在哪里,以我当前的路径为例,在/usr/local/php目录下. 下一步需要下载扩展包,进入http://pecl.php.net/package/yaf寻找符合版本要求的 ...

  5. textarea只允许上下调节尺寸

    对于extarea,因为如果不做限制的话,它是可以自由调节尺寸的,对于这一点我相信用户是非常喜欢的,因为每个人都有自己认为合适的尺寸,但是对于前端来说就比较头疼了,因为随意调节宽高,就会破坏整体布局, ...

  6. 用线性单元(LinearUnit)实现工资预测的Python3代码

    功能:通过样本进行训练,让线性单元自己找到(这就是所谓机器学习)工资计算的规律,然后用两组数据进行测试机器是否真的get到了其中的规律. 原文链接在文尾,文章中的代码为了演示起见,仅根据工作年限来预测 ...

  7. TCP/IP卷一没提到的策略路由

    策略路由 tcp/ip书上介绍了选路和动态路由,没有提及策略路由,应该是因为那个年代还不存在策略路由吧,但是这是个很有用的东西. 背景 昨天领导做了一个虚拟机,里面配了两个网络172.16.50.33 ...

  8. java-数据库连接,分层实现增删改查测试

    成员属性类: public class Dog { private int number; private String name; private String strain; private St ...

  9. ui设计未来前景怎么样?ui设计这个行业怎么样?

    千锋UI设计师培训不仅有正常的培训课程,还为学员提供了UI+产品经理周末提升班,目的是为了给那些有基础的UI设计师提高能力.今天要为大家说的是一位千锋UI设计师的故事. 大家好,我是千锋UI设计培训部 ...

  10. RISC_CPU

    采用Top-Down设计方法,深入理解CPU的运作原理,本文参照夏宇闻老师的<Verilog 数字系统设计教程>,并做了相应的修改.仿真工具采用Mentor公司的ModelSim. 1.C ...