边坡优化主题5——bzoj 1096 [ZJOI2007]仓库建设 解决问题的方法
【原标题】
1096: [ZJOI2007]仓库建设
Time Limit: 10 Sec Memory Limit: 162 MB id=1096" style="color:blue; text-decoration:none">Submit
Submit: 1998 Solved: 816
[
Description
L公司有N个工厂,由高究竟分布在一座山上。
如图所看到的,工厂1在山顶。工厂N在山脚。
因为这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。
突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。因为地形的不同,在不同工厂建立仓库的费用可能是不同的。
第i个工厂眼下已有成品Pi件。在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其它的仓库进行储藏。而因为L公司产品的对外销售处设置在山脚的工厂N,故产品仅仅能往山下运(即仅仅能运往编号更大的工厂的仓库)。当然运送产品也是须要费用的,如果一件产品运送1个单位距离的费用是1。如果建立的仓库容量都都是足够大的,能够容下全部的产品。你将得到下面数据:
工厂i距离工厂1的距离Xi(当中X1=0); 工厂i眼下已有成品数量Pi; 在工厂i建立仓库的费用Ci; 请你帮助L公司寻找一个仓库建设的方案。使得总的费用(建造费用+运输费用)最小。
Input
第一行包括一个整数N,表示工厂的个数。接下来N行每行包括两个整数Xi, Pi, Ci, 意义如题中所述。
Output
仅包括一个整数。为能够找到最优方案的费用。
Sample Input
0 5 10
5 3 100
9 6 10
Sample Output
HINT
在工厂1和工厂3建立仓库。建立费用为10+10=20。运输费用为(9-5)*3 = 12。总费用32。假设仅在工厂3建立仓库。建立费用为10,运输费用为(9-0)*5+(9-5)*3=57。总费用67,不如前者优。
【数据规模】对于20%的数据, N ≤500;对于40%的数据, N ≤10000;对于100%的数据, N ≤1000000。 全部的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。
【分析与解法】总结一下我的近期的斜率优化题目的通解。
首先声明一下。我不会证明斜率优化的正确性。大概打表或是看数据范围就知道了。
第一步:推出n^2的方程,通常是一维方程,并且通用格式是:f[i]=min/max(f[j]+G)
f[i]=min(f[j]+sum[i]-sum[j]-G[j]*(a[i].x-a[j].x)+a[i].c);
第二步:如果j<k。且k比j要优。
把刚才的方程写成f[k]+G1<f[j]+G2的形式。
f[k]+sum[i]-sum[k]-G[k]*(a[i].x-a[k].x)+a[i].c<f[j]+sum[i]-sum[j]-G[j]*(a[i].x-a[j].x)+a[i].c
第三步:然后把有关k、j的项移到左边,把有关i的项移到右边。
有时两边要同除一个数使得右边仅仅剩下与i有关的成分。
抵消f[k]-sum[k]-G[k]*(a[i].x-a[k].x)<f[j]-sum[j]-G[j]*(a[i].x-a[j].x)
化简f[k]-f[j]+sum[j]-sum[k]+G[k]*a[k].x-G[j]*a[j].x<a[i].x*(G[k]-G[j])
除去(f[k]-f[j]+sum[j]-sum[k]+G[k]*a[k].x-G[j]*a[j].x)/(G[k]-G[j])<a[i].x
如今,就已经推出了斜率,再套用单调队列就可以。
【代码】
#include<cstdio>
#include<algorithm>
#define N 1000005
using namespace std;
typedef long long ll;
struct arr{ll x,p,c;}a[N];
ll sum[N],G[N],f[N],q[N],n,i,j,h,t;
bool cmp(arr a,arr b){return a.x<b.x;};
double xie(long long k,long long j)
{
double temp=(f[k]-f[j]+sum[j]-sum[k]+G[k]*a[k].x*1.0-G[j]*a[j].x)/(G[k]-G[j]);
return temp;
}
int main()
{
scanf("%lld",&n);
for (i=1;i<=n;i++)
scanf("%lld%lld%lld",&a[i].x,&a[i].p,&a[i].c);
sort(a+1,a+n+1,cmp);
for (i=1;i<=n;i++)
sum[i]=sum[i-1]+G[i-1]*(a[i].x-a[i-1].x),G[i]=G[i-1]+a[i].p;
for (i=1;i<=n;i++)
{
while (h<t&&xie(q[h+1],q[h])<a[i].x) h++;
f[i]=f[q[h]]+sum[i]-sum[q[h]]-G[q[h]]*(a[i].x-a[q[h]].x)+a[i].c;
while (h<t&&xie(q[t],q[t-1])>xie(i,q[t])) t--;
q[++t]=i;
}
printf("%lld",f[n]);
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
边坡优化主题5——bzoj 1096 [ZJOI2007]仓库建设 解决问题的方法的更多相关文章
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- bzoj 1096 [ZJOI2007]仓库建设(关于斜率优化问题的总结)
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3234 Solved: 1388[Submit][Stat ...
- BZOJ 1096: [ZJOI2007]仓库建设( dp + 斜率优化 )
dp(v) = min(dp(p)+cost(p,v))+C(v) 设sum(v) = ∑pi(1≤i≤v), cnt(v) = ∑pi*xi(1≤i≤v), 则cost(p,v) = x(v)*(s ...
- bzoj 1096: [ZJOI2007]仓库建设 斜率優化
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2242 Solved: 925[Submit][Statu ...
- BZOJ 1096 ZJOI2007 仓库建设 边坡优化
标题效果:特定n植物,其中一些建筑仓库,有一点使,假设没有仓库仓库向右仓库.最低消费要求 非常easy边坡优化--在此之前刷坡优化的情况下,即使这道题怎么错过 订购f[i]作为i点建设化妆i花费所有安 ...
- BZOJ 1096 [ZJOI2007]仓库建设(斜率优化DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1096 [题目大意] 有个斜坡,有n个仓库,每个仓库里面都有一些物品,物品数目为p,仓库 ...
- BZOJ 1096 [ZJOI2007]仓库建设:斜率优化dp
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1096 题意: 有n个工厂,从左往右排成一排,分别编号1到n. 每个工厂里有p[i]件产品, ...
- bzoj 1096: [ZJOI2007]仓库建设【斜率优化】
好眼熟啊 直接dp显然很难算,所以设val为只在n点建一个仓库的费用,然后设f[i]为在i~n点建若干仓库并且i点一定建一个仓库的最大省钱数 转移很显然,设s为p的前缀和,f[i]=max{f[j]+ ...
- BZOJ 1096: [ZJOI2007]仓库建设(动态规划+斜率优化)
第一次写斜率优化,发现其实也没啥难的,没打过就随便找了一份代码借(chao)鉴(xi)下,不要介意= = 题解实在是懒得写了,贴代码吧= = CODE: #include<cstdio># ...
随机推荐
- javascript 自己主动绑定JS callback 的方法函数
自己写的一个javascript 智能绑定callback 而且调用运行的函数.主要用于异步请求的 ajax中: <!DOCTYPE html> <html> <head ...
- 制作openstack用的centos6.5镜像
目的: 在centos6.5操作系统环境下制作一个centos6.5的kvm镜像,安装cloud-init,能自己主动扩展根分区 一.制作环境: 操作环境是在openstack平台开一个实例.装的是c ...
- 与众不同 windows phone (10) - Push Notification(推送通知)之推送 Tile 通知, 推送自定义信息
原文:与众不同 windows phone (10) - Push Notification(推送通知)之推送 Tile 通知, 推送自定义信息 [索引页][源码下载] 与众不同 windows ph ...
- ExtJs4 笔记(10) Ext.tab.Panel 选项卡
本篇讲解选项卡控件. 一.基本选项卡 首先我们来定义一个基本的选项卡控件,其中每个Tab各有不同,Tab的正文内容可以有三种方式获取: 1.基本方式:通过定义html和items的方式. 2.读取其他 ...
- android面试题 不仅仅是面试是一个很好的学习
下面的问题是在网上找到的总结,感谢您分享!希望,我们的共同进步,找到自己心仪的公司,: 1.android dvm 流程和Linux这个过程.无论是应用程序对同一概念: 答案:dvm是dalivk虚拟 ...
- .NET Core 1.0.0 RC2
.NET Core 1.0.0 RC2 在.NET Core 1.0.0 RC2即将正式发布之际,我也应应景,针对RC2 Preview版本编写一个史上最简单的MVC应用.由于VS 2015目前尚不支 ...
- Eclipse插件引入jar包的方法(转)
搞了两天,终于找到解决办法了.原来 Eclipse 插件项目引入外面的jar包不能用 build path---->add external jars的方法. 先说明两个概念:类加载器,O ...
- 14.5.2 Changing the Number or Size of InnoDB Redo Log Files 改变InnoDB Redo Log Files的数量
14.5.2 Changing the Number or Size of InnoDB Redo Log Files 改变InnoDB Redo Log Files的数量 改变InnoDB redo ...
- 浅析点对点(End-to-End)的场景文字识别(图片文字)
一.背景 随着智能手机的广泛普及和移动互联网的迅速发展,通过手机等移动终端的摄像头获取.检索和分享资讯已经逐步成为一种生活方式.基于摄像头的 (Camera-based)的应用更加强调对拍摄场景的理解 ...
- php使用http请求头实现文件下载
众所周知php对http协议的依赖特别强,像java或者asp.net在某些情况下可以不依赖http例如asp.net的winform,对php来说文件下载可以使用http的请求头加上php的IO就可 ...