kafka消费者重试逻辑的实现
背景
在kafka的消费者中,如果消费某条消息出错,会导致该条消息不会被ack,该消息会被不断的重试,阻塞该分区的其他消息的消费,因此,为了保证消息队列不被阻塞,在出现异常的情况下,我们一般还是会ack该条消息,再另外对失败的情况进行重试
目标
实现一个完善的重试逻辑,一般需要考虑一下几个因素:
- 重试的时间间隔
- 最大重试次数
- 是否会漏掉消息
实现
扔回队尾
在消息出错时,将消息扔回队尾
优点:
- 实现简单,没有别的依赖项
缺点:
- 无法控制重试时间间隔
基于数据库任务表的扫描方案
在数据库中增加一个任务的状态表,然后用一个定时任务去扫描任务表中,失败的任务,然后进行重试,其中记录下重试的次数即可
优点:
- 实现简单,一般这种离线任务,根据统计的需求,都会有一个任务状态表的,所以仅仅是增加一个定时任务去扫表
缺点:
- 性能较差,定时任务,一般都在无意义的扫描,浪费性能
新增重试队列的方案
新增一个重试队列,消费消息出错时,将时间戳和消息发送到重试队列,然后在重试队列中,根据时间,来判断阻塞时间,代码如下:
func handleRetryEvent(ctx context.Context, conf *util.Conf, data []byte) (err error) {
defer common.Recover(ctx, &err)
log := common.Logger(ctx).WithField("Method", "consumer.handleRetryEvent")
retryEvent := &MergeRetryEvent{}
err = json.Unmarshal(data, retryEvent)
if err != nil {
log.WithError(err).Error("failed to unmarshal data")
return nil
}
log.WithField("contact_id", retryEvent.ContactId).Info("receive message")
delaySecond := (retryEvent.CreateTime + SLEEPSECOND) - time.Now().Unix()
if delaySecond <= 0 {
log.Info("send message to account merge event")
err = SendAccountMergeEventTopic(ctx, retryEvent.ContactId)
return err
} else {
log.Infof("sleep %d seconds", delaySecond)
time.Sleep(time.Duration(delaySecond) * time.Second)
err = SendAccountMergeEventTopic(ctx, retryEvent.ContactId)
return err
}
}
优点:
相对于扫表的方案,改方案没有无意义的扫表操作,性能更好
注意:之前在网上看到一个重试队列的实现,因为害怕开过多的线程(协程),作者用了一个channel来缓存重试消息,然后在一个协程池中去消费消息,消费的逻辑和上面的实例代码差不多,这样做是有风险的,因为channel是在本机的内存中,没有本地存储的,是存在丢消息的风险的(服务重启等情况)
参考链接:
https://blog.pragmatists.com/retrying-consumer-architecture-in-the-apache-kafka-939ac4cb851a
kafka消费者重试逻辑的实现的更多相关文章
- Kafka消费者-从Kafka读取数据
(1)Customer和Customer Group (1)两种常用的消息模型 队列模型(queuing)和发布-订阅模型(publish-subscribe). 队列的处理方式是一组消费者从服务器读 ...
- Kafka集群安装部署、Kafka生产者、Kafka消费者
Storm上游数据源之Kakfa 目标: 理解Storm消费的数据来源.理解JMS规范.理解Kafka核心组件.掌握Kakfa生产者API.掌握Kafka消费者API.对流式计算的生态环境有深入的了解 ...
- kafka消费者客户端
Kafka消费者 1.1 消费者与消费者组 消费者与消费者组之间的关系 每一个消费者都隶属于某一个消费者组,一个消费者组可以包含一个或多个消费者,每一条消息只会被消费者组中的某一个消费者所消费.不 ...
- 带你涨姿势的认识一下 Kafka 消费者
之前我们介绍过了 Kafka 整体架构,Kafka 生产者,Kafka 生产的消息最终流向哪里呢?当然是需要消费了,要不只产生一系列数据没有任何作用啊,如果把 Kafka 比作餐厅的话,那么生产者就是 ...
- Kafka 消费者
应用从Kafka中读取数据需要使用KafkaConsumer订阅主题,然后接收这些主题的消息.在我们深入这些API之前,先来看下几个比较重要的概念. Kafka消费者相关的概念 消费者与消费组 假设这 ...
- 5.Kafka消费者-从Kafka读取数据(转)
http://www.dengshenyu.com/%E5%88%86%E5%B8%83%E5%BC%8F%E7%B3%BB%E7%BB%9F/2017/11/14/kafka-consumer.ht ...
- Kafka 消费者解析
一.消费者相关概念 1.1 消费组&消费者 消费者: 消费者从订阅的主题消费消息,消费消息的偏移量保存在Kafka的名字是__consumer_offsets的主题中 消费者还可以将⾃⼰的偏移 ...
- kafka消费者客户端(0.9.0.1API)
转自:http://orchome.com/203 kafka客户端从kafka集群消费消息(记录).它会透明地处理kafka集群中服务器的故障.它获取集群内数据的分区,也和服务器进行交互,允许消费者 ...
- Kafka权威指南 读书笔记之(四)Kafka 消费者一一从 Kafka读取数据
KafkaConsumer概念 消费者和消费者群组 Kafka 消费者从属于消费者群组.一个群组里的消费者订阅的是同一个主题,每个消费者接收主题一部分分区的消息. 往群组里增加消费者是横向伸缩消费能力 ...
随机推荐
- ajaxReturn案例
请查看:http://www.cnblogs.com/bushe/p/4625097.html 不用自己写json格式啦,直接拿这个用就可以啦
- Git (一)预设环境和免密登录
背景 一直用的svn,这段时间换了之后才发现git的强大功能.缺点就是可能上手比较难一点. 接下来就带你Git入门 Git是什么? Git是目前世界上最先进的分布式版本控制系统 Git有什么特点?好用 ...
- Python爬虫之记录一次下载验证码的尝试
好久没有写过爬虫的文章了,今天在尝试着做验证码相关的研究时,遇到了验证码的收集问题. 一般,验证码的加载都有着比较复杂的算法和加密在里边,但是笔者今天碰到的验证码却比较幸运,有迹可循.在此,给 ...
- Nginx入门及如何反向代理解决生产环境跨域问题
1.Nginx入门与基本操作篇 注:由于服务器是windows系统,所以本文主要讲解Nginx在windows下的操作. 首先下载Nginx 解压缩,我们所有的配置基本都在万能的 nginx/conf ...
- 【阅读笔记】Ranking Relevance in Yahoo Search (二)—— maching learned ranking
3. MACHINE LEARNED RANKING 1) 完全使用不好的数据去训练模型不可行,因为负面结果不可能覆盖到所有方面: 2) 搜索可以看做是个二分问题,在此实验中,我们使用gradient ...
- C++编程入门题目--No.4
题目: 输入某年某月某日,判断这一天是这一年的第几天? 程序分析: 以3月5日为例,应该先把前两个月的加起来,然后再加上5天即本年的第几天,特殊情况,闰年且输入月份大于3时需考虑多加一天. #incl ...
- ACM学习心得
今天打比赛,调整好了心态,不管rank榜,所以做的比上次好,今天A了四个题,都很水,memset的清零时间,需要好长,因为memset 跟cin超时了,它的数据量1e6,所以超时了还是多用scanf, ...
- 题解 bzoj 4398福慧双修(二进制分组)
二进制分组,算个小技巧 bzoj 4398福慧双修 给一张图,同一条边不同方向权值不同,一条边只能走一次,求从1号点出发再回到1号点的最短路 一开始没注意一条边只能走一次这个限制,打了个从一号点相邻节 ...
- Android APP 性能测试之 GT 工具
一.介绍: GT(随身调)是 APP 的随身调测平台,它是直接运行在手机上的"集成调测环境"(IDTE, Integrated Debug Environment).利用 GT,仅 ...
- 题目分享G 二代目
题意:有n组数,每组包含两个数,问在每组只能取一个的前提下能组成的最长的从1开始的连续自然数有几个? 分析:刚学了差分约束系统,很容易往转换成图的方向去想 将他读入的这n组数当成边读入 很容易会得到一 ...