Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。 
比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。 
当确定N和M后,显然一共有M^N张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。 

Input

两个整数N和M(N <= 15 , M <= 100000000)。

Output

可以完成任务的卡片数。

Sample Input

2 4

Sample Output

12

Hint

这12张卡片分别是: 
(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4), 
(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4) 
看了好久才略懂
题解  无非就一个方程a1*x1+a2*x2+....+an*xn+M*x(n+1)=1;
要想使方程有解__gcd(a1,a2,a3...an,M)=1;
所以我们要只要能是其最大公约数为1 的组合就可以了,那么问题来了如何求呢?
首先我们知道M个数字,N个位置,一共有M^n种选择,为__GCD为1 的情况太多了,我们可以先求出不为1 的情况然后减1,因为问题转换为了求m个数求GCD不为1的组合数
我们知道 每一组数据中都要有M,如果说那么这么多数字的公因子也一定是M的公因子,所以我们首先要对M进行素数分解

然后用容斥原理枚举最大公约数不为 1 的个数,也就是对M的所有质因子进行排列,因为最大公因子不为1,那一定是M的个别因子的组合,假设最大公约数为n,那么除了M其他N个数

必须都是N 的倍数,因此一共有M/n个数可以选择(由于这里是质因子,我们直接除就可以啦,不用求LCM啦)。。共有KSM(M/n,N)中选择(快速幂)

然后就是容斥的奇加偶减 最后一步 用总的减去gcd不为1的就是最后答案

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int N=1E6+;
ll arr[N]; ll ksm(ll x,ll y){
ll res=;
while(y){
if(y&) res=res*x;
x=x*x;
y>>=;
}
return res;
} ll zfj(ll m){
ll pos=;
for(ll i=;i*i<=m;i++){
if(m%i==){
arr[pos++]=i;
while(m%i==){
m/=i;
}
}
}
if(m>){
arr[pos++]=m;
}
return pos;
}
int main(){
ll n,m;
cin>>n>>m;
ll pos=zfj(m);
ll s=;
for(int i=;i<(<<pos);i++){
ll cnt=;
ll sum=;
for(int j=;j<pos;j++){
if(&(i>>j)){
cnt++;
sum*=arr[j];
}
}
if(cnt&) {
s+=ksm(m/sum,n);
}
else {
s-=ksm(m/sum,n);
}
}
printf("%lld\n",ksm(m,n)-s);
return ;
}

POJ 跳蚤的更多相关文章

  1. poj 1091 跳蚤

    跳蚤 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8482   Accepted: 2514 Description Z城 ...

  2. POJ 1091 跳蚤 容斥原理

    分析:其实就是看能否有一组解x1,x2, x3, x4....xn+1,使得sum{xi*ai} = 1,也就是只要有任意一个集合{ai1,ai2,ai3, ...aik|gcd(ai1, ai2, ...

  3. POJ题目排序的Java程序

    POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...

  4. [BZOJ1220][POJ1091][HNOI2002]跳蚤

    [BZOJ1220][POJ1091][HNOI2002]跳蚤 试题描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长. ...

  5. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  6. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  7. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  8. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

  9. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

随机推荐

  1. 洛谷1972 HH的项链 树状数组查询区间内不同的数的数量

    题目链接:https://www.luogu.com.cn/problem/P1972 题意大致是:给定一个序列长度为n,给出m个查询区间,要求响应是区间内不同的数的个数.为此我们考虑到树状数组的区间 ...

  2. MySQL数据库参数调优方法

    怎么配置MySQL服务器,但考虑到服务器硬件配置的不同,具体应用的差别,那些文章的做法只能作为初步设置参考,我们需要根据自己的情况进行配置优化,好的做法是MySQL服务器稳定运行了一段时间后运行,根据 ...

  3. pyplot 作图总结

    折线图 下面是绘制折线图,设置图片的横轴纵轴标签,图片标题的API的用法. import matplotlib.pyplot as pyplot # init pyplot.figure() # ar ...

  4. 高性能RabbitMQ

    1,什么是RabbitMq RabbitMQ是实现了高级消息队列协议(AMQP)的开源消息代理软件(亦称面向消息的中间件).RabbitMQ服务器是用Erlang语言编写的,而集群和故障转移是构建在开 ...

  5. Python python 函数参数:关键字参数

    # 关键字参数 '''关键字参数代表传入任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict ''' def student(name,sex,**keywords): print(' ...

  6. vscode vue 模版生成,vue 一键生成

    vscode vue 模版 继上篇文章(vue 格式化),顺便记录下 vue 模版生成.图片就不在贴了,如果有找不到 vscode 插件商店的可以访问上篇文章. 一.安装 VueHelper 在 vs ...

  7. Oracle, Mysql及Sql Server的区别

    从事技术工作以来,算是把关系型数据库SQL Server,Oracle, MySQL均用了一遍,本文参考网友的梳理,做一下知识总结. 源头说起 Oracle:中文译作甲骨文,这是一家传奇的公司,有一个 ...

  8. Java中for(;;)和while(true)的区别

    while(true): public class Test { public static void main(String[] args) { while(true) { } } } 在?看看汇编 ...

  9. linux进程和线程直接通信方式梳理

    对于linux的进程之间.线程直接的通信方式进行梳理,这些都属于基本知识,不过因为知识体系“年久失修”,需要重新总结汇总.

  10. Material Design 组件之NavigationView

    今天来看一下 NavigationView 的使用,NavigationView 是一个标准的导航菜单,其菜单内容由菜单资源文件来填充,NavigationView 一般和 DrawerLayout ...