tensorflow(六)
一、TensorBoard可视化工具
TensorBoard实现形式为web应用程序,这为提供分布式、跨系统的图形界面服务带来了便利。
1.使用流程
SummaryOps->Session--(input)-->FileWriter---(add)--->Event file---(load)-->TensorBoard
import tensorflow as tf
with tf.name_scope('graph') as scope:
matrix1 = tf.constant([[3., 3.]],name ='matrix1') #1 row by 2 column
matrix2 = tf.constant([[2.],[2.]],name ='matrix2') # 2 row by 1 column
product = tf.matmul(matrix1, matrix2,name='product')
sess = tf.Session()
writer = tf.summary.FileWriter("/data/logs/", sess.graph) #第一个参数指定生成文件的目录。
init = tf.global_variables_initializer()
sess.run(init)
命令行执行 tensorboard --logdir=/data/logs
打开localhost:6006

如图所示,tf.summary 模块的功能
2.可视化数据流图
通过with tf.name_scope('sc_name'):定义一个名字可以把一些列操作定义为一个节点,在图上展示为一个节点

点击加号可以展示节点内详情
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('/Users/quxiaoyuan/work/data/mnist',one_hot=True)
with tf.name_scope('input'):
x = tf.placeholder(tf.float32,[None,784],name='x-input')
y_ = tf.placeholder(tf.float32,[None,10],name='y-input')
with tf.name_scope('softmax_layer'):
with tf.name_scope('weights'):
weights = tf.Variable(tf.zeros([784,10]))
with tf.name_scope('biases'):
biases = tf.Variable(tf.zeros([10]))
with tf.name_scope('Wx_plus_b'):
y = tf.matmul(x,weights) + biases with tf.name_scope('cross_entropy'):
diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y)
with tf.name_scope('total'):
cross_entropy = tf.reduce_mean(diff)
tf.summary.scalar('cross_entropy',cross_entropy)
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
3.ft.summary操作
add_summay生成折线图
with tf.name_scope('cross_entropy'):
diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_,logits=y)
with tf.name_scope('total'):
cross_entropy = tf.reduce_mean(diff)
tf.summary.scalar('cross_entropy',cross_entropy)
with tf.name_scope('train'):
train_step = tf.train.AdamOpimizer(0.01).minimize(cross_entropy)
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
tf.summary.scalar('accuracy',accuracy)
merged = tf.summary.merge_all()
for i in range(FLAGS.max_step):
if i % FLAGS.max_step == 0:
summary, acc = sess.run([merged,accuracy],feed_dict=feed_dict(False))
witer.add_summary(summary,i)
histogram生成数据分布图
with tf.name_scope('softmax_layer'):
with tf.name_scope('weights'):
weights = tf.Variable(tf.zeros([784,10]))
tf.summary.histogram('weights',weights)
tf.summary.image生成图像
with tf.name_scope('input'):
x = tf.placeholder(tf.float32,[None,784],name='x-input')
y_ = tf.placeholder(tf.float32,[None,10],name='y-input')
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x,[-1,28,28,1])
tf.summary.image('input',image_shaped_input,10)
tensorflow(六)的更多相关文章
- TensorFlow(六):tensorboard网络结构
# MNIST数据集 手写数字 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # ...
- TF Boys (TensorFlow Boys ) 养成记(六)
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train ...
- 第四百一十六节,Tensorflow简介与安装
第四百一十六节,Tensorflow简介与安装 TensorFlow是什么 Tensorflow是一个Google开发的第二代机器学习系统,克服了第一代系统DistBelief仅能开发神经网络算法.难 ...
- TF Boys (TensorFlow Boys ) 养成记(六): CIFAR10 Train 和 TensorBoard 简介
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train ...
- TensorFlow从1到2(六)结构化数据预处理和心脏病预测
结构化数据的预处理 前面所展示的一些示例已经很让人兴奋.但从总体看,数据类型还是比较单一的,比如图片,比如文本. 这个单一并非指数据的类型单一,而是指数据组成的每一部分,在模型中对于结果预测的影响基本 ...
- 第六节,TensorFlow编程基础案例-保存和恢复模型(中)
在我们使用TensorFlow的时候,有时候需要训练一个比较复杂的网络,比如后面的AlexNet,ResNet,GoogleNet等等,由于训练这些网络花费的时间比较长,因此我们需要保存模型的参数. ...
- TensorFlow从入门到理解(六):可视化梯度下降
运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.m ...
- 『PyTorch x TensorFlow』第六弹_从最小二乘法看自动求导
TensoFlow自动求导机制 『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归 下面做了三个简单尝试, 利用包含gradients.assign等tf函数直接构建图进行自动 ...
- tensorFlow(六)应用-基于CNN破解验证码
TensorFlow基础见前博客 简介 传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别.本教程将验证码识别问题转化为分类的问题,实现对验证码进行整体识别. 步骤简介 本教程一共分为四 ...
随机推荐
- 65.ORM查询条件:gte,gt,lte和lt的使用
1. gte: 代表的是大于等于,英文全称为:great than equal.举例:找到文章id大于等于3等文章,示例代码如下: 定义模型的示例代码如下: from django.db import ...
- JAVAEE 和项目开发(第四课:HTTP的响应格式和响应状态码)
HTTP 协议之响应 响应格式的结构: 响应行(状态行):HTTP 版本.状态码.状态消息 响应头:消息报头,客户端使用的附加信息 空行:响应头和响应实体之间的,必须的. 响应实体:正文,服务器返回给 ...
- [Python3] RSA的加解密和签名/验签实现 -- 使用pycrytodome
Crypto 包介绍: pycrypto,pycrytodome 和 crypto 是一个东西,crypto 在 python 上面的名字是 pycrypto 它是一个第三方库,但是已经停止更新,所以 ...
- 201771010123汪慧和《面向对象程序设计Java》第十八周实验总结
一.总复习纲要 1. Java语言特点与开发环境配置(第1章.第2章) 2. Java基本程序结构(第3章) 3. Java面向对象程序结构(第4章.第5章.第6章) 4. 类.类间关系.类图 5. ...
- [RoarCTF 2019]Simple Upload
0x00 知识点 1:Think PHP上传默认路径 默认上传路径是/home/index/upload 2:Think PHP upload()多文件上传 think PHP里的upload()函数 ...
- 2020/1/31 PHP代码审计之目录穿越漏洞
0x00 目录穿越 目录穿越(Directory Traversal)攻击是黑客能够在Web应用程序所在的根目录以外的文件夹上,任意的存取被限制的文件夹,执行命令或查找数据.目录穿越攻击,也与人称为P ...
- Java 跨系统开发隐患(一)
换行符 主流系统换行符如下: Windows : \r\n Linux : \n Unix : \r 为了保证代码可以跨系统开发或使用,建议使用换行符时用下列语句获取: System.getPrope ...
- 使用Dom4j生成xml文件(utf-8编码)
xml文件内容: <?xml version="1.0" encoding="UTF-8"?> <result> <code> ...
- 京东云入选2019年度TOP100全球软件案例 新一代服务治理框架加速行业落地
11月14日-17日, 2019TOP100全球软件案例研究峰会(TOP100summit)在北京国家会议中心举办.Top100summit是科技界一年一度的案例研究峰会,每年会秉承"从用户 ...
- 第二季 第四集 css2
display属性 指定了元素的显示类型 它包含两类基础特征,用于指定元素怎样生成盒模型 外部显示类型定义了元素怎样参与流式布局的处理 外部显示类型 */ display: block; // 独占一 ...