1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))
1.求loss:
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))
第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes
第二个参数labels:实际的标签,大小同上
具体的执行流程大概分为两步:
第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个大小的向量num_classes([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:
其中指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)
中,第i个元素的值就是
softmax的输出向量[Y1,Y2,Y3...]
显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss
注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步
tf.reduce_mean操作,对向量求均值!
import tensorflow as tf logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
y=tf.nn.softmax(logits)
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #交叉熵公式
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_))#代入函数 with tf.Session() as sess:
softmax=sess.run(y)
c_e = sess.run(cross_entropy)
c_e2 = sess.run(cross_entropy2)
print("step1:softmax result=")
print(softmax)
print("step2:cross_entropy result=")
print(c_e)
print("Function(softmax_cross_entropy_with_logits) result=")
print(c_e2)
step1:softmax result=
[[0.09003057 0.24472848 0.66524094]
[0.09003057 0.24472848 0.66524094]
[0.09003057 0.24472848 0.66524094]]
step2:cross_entropy result=
1.222818
Function(softmax_cross_entropy_with_logits) result=
1.2228179
1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))的更多相关文章
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...
- tf.nn.softmax_cross_entropy_with_logits的用法
http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...
- tf.nn.softmax_cross_entropy_with_logits 分类
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...
- tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits
tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...
- 关于 tf.nn.softmax_cross_entropy_with_logits 及 tf.clip_by_value
In order to train our model, we need to define what it means for the model to be good. Well, actuall ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- TensorFlow:tf.reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
转载:https://www.cnblogs.com/yuzhuwei/p/6986171.html 1.概述 在深度学习里研究的物体的关系,都是比较复杂的.比如一个图片32X32大小的,它的像素信息 ...
- TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu
import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activat ...
随机推荐
- HDU1880 魔咒词典
题目大意:对应的输入多行,每行两个字符串,两个字符串互相映射.接下来询问的时候,如果这个字符串出现过,输出其对应的字符串. 分析:二重哈希来判断字符串是否存在,输出其对应的字符串就行.二重哈希的入门题 ...
- oracle 实现主键id自增
公司现在项目数据库使用oracle,oracle实现表主键自增比mysql麻烦 mysql 在表主键auto_increment 打钩即可.oracle没有改属性,就相对麻烦.特此记录一下自增方法 测 ...
- [Codeforces] #603 (Div. 2) A-E题解
[Codeforces]1263A Sweet Problem [Codeforces]1263B PIN Code [Codeforces]1263C Everyone is a Winner! [ ...
- gem5-gpu 运行 PARSEC2.1
PARSEC是针对共享内存多核处理器(CPU)的一套基准测试程序,详细介绍见wiki:http://wiki.cs.princeton.edu/index.php/PARSEC,主要参考:http:/ ...
- Atcoder比赛副站
https://agc039.contest.atcoder.jp/
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-info-sign
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- Oracle Exadata 学习笔记之核心特性Part1
近年来,国内众多厂商都有一体机的产品,不过更多都是围绕硬件本身的堆砌和优化,那么这些产品和Oracle一体机最大的区别在哪里呢?最近读了李亚的<Oracle Exadata技术详解>,系统 ...
- 七十九、SAP中数据库操作之更新数据,UPDATE的用法
一.我们查看SFLIGHT数据库,比如我们需要改这条数据 二.代码如下 三.执行效果如下,显示“数据更新成功” 四.我们来看一下SFLIGHT数据库,发现已经由DEM更改为了AAA了
- 十、SAP小数需要用引号括起来
一.我们定义一个浮点型f的变量,然后赋值,检查会报错 二.我们把引号括起来之后,就正常了,如下: 三.输出效果如下: 注意:f类型的变量,输出不是准确值
- java枚举类(转)
转自: http://blog.sina.com.cn/s/blog_697b968901013ih1.html 这里主要讲解的是Java的枚举类型 什么是枚举? 以我的理解答:枚举是我们自己定义的一 ...