1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))
1.求loss:
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))
第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,
大小就是
num_classes
第二个参数labels:实际的标签,大小同上
具体的执行流程大概分为两步:
第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个
大小的向量num_classes
([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率
第二步是
softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:
其中
指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)
中,第i个元素的值就是
softmax的输出向量[Y1,Y2,Y3...]
显而易见,预测
越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss
注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,
我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,
最后才得到
,如果求loss,则要做一步
tf.reduce_mean操作,对向量求均值!
import tensorflow as tf logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
y=tf.nn.softmax(logits)
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #交叉熵公式
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_))#代入函数 with tf.Session() as sess:
softmax=sess.run(y)
c_e = sess.run(cross_entropy)
c_e2 = sess.run(cross_entropy2)
print("step1:softmax result=")
print(softmax)
print("step2:cross_entropy result=")
print(c_e)
print("Function(softmax_cross_entropy_with_logits) result=")
print(c_e2)
step1:softmax result=
[[0.09003057 0.24472848 0.66524094]
[0.09003057 0.24472848 0.66524094]
[0.09003057 0.24472848 0.66524094]]
step2:cross_entropy result=
1.222818
Function(softmax_cross_entropy_with_logits) result=
1.2228179
1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))的更多相关文章
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...
- tf.nn.softmax_cross_entropy_with_logits的用法
http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...
- tf.nn.softmax_cross_entropy_with_logits 分类
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...
- tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits
tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...
- 关于 tf.nn.softmax_cross_entropy_with_logits 及 tf.clip_by_value
In order to train our model, we need to define what it means for the model to be good. Well, actuall ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- TensorFlow:tf.reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
转载:https://www.cnblogs.com/yuzhuwei/p/6986171.html 1.概述 在深度学习里研究的物体的关系,都是比较复杂的.比如一个图片32X32大小的,它的像素信息 ...
- TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu
import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activat ...
随机推荐
- 8张图片掌握JS原型链
- JAVA虚拟机:内存各个区介绍
概述:java应用程序由java虚拟机自动管理程序执行期间内存管理. 优势:1.不再需要程序员去为使用的内存在程序中手动编写释放内存代码. 2.由虚拟机管理内存不容易出现内存泄漏和内存溢出的问题. 缺 ...
- ROS常用库(五)navigation之Tutorials
一.TF 详见古月居 https://www.guyuehome.com/355 重点:广播TF,订阅,编译时Cmakelist添加编译选项 broadcaster.sendTransform( tf ...
- Day7 - B - Super A^B mod C FZU - 1759
Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000000000,1<=B ...
- Day6 - 牛客203E
https://ac.nowcoder.com/acm/contest/203/E 埋坑不会做
- 013、MySQL取本月最后日期,取每个月的最后一天日期
#取本月最后一天 SELECT last_day( curdate( ) ); #取上个月最后一天 , INTERVAL MONTH ) ); , INTERVAL MONTH ) ); , INTE ...
- css3的伪(伪类和伪元素)大合集
本文讲css3的伪,不是讲它有多虚伪,而是说它的伪元素样式.不得不说以前虽知html伪元素,但很少用,后得知借助css3伪元素可以发挥极大的便利.故总结css3的伪如下: CSS中存在一些比较特殊的属 ...
- F. Fairness 分硬币最大差值最小
F. Fairness time limit per test 2.0 s memory limit per test 64 MB input standard input output standa ...
- 《ES6标准入门》(阮一峰)--11.对象的新增方法
1.Object.is() ES5 比较两个值是否相等,只有两个运算符:相等运算符(==)和严格相等运算符(===).它们都有缺点,前者会自动转换数据类型,后者的NaN不等于自身,以及+0等于-0.J ...
- 软件管理-RPM命令管理:安装升级与卸载
1.包名与包全名 包名 : 操作已经安装的软件包时,使用包名:系统会搜索var/lib/rpm中的数据库 包全名: 操作的包时没有安装的软件包时,使用包全名,而且注意路径 2.RPM安装 切换到光盘p ...