1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))
1.求loss:
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))
第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,
大小就是
num_classes
第二个参数labels:实际的标签,大小同上
具体的执行流程大概分为两步:
第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个
大小的向量num_classes
([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率
第二步是
softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:
其中
指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)
中,第i个元素的值就是
softmax的输出向量[Y1,Y2,Y3...]
显而易见,预测
越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss
注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,
我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,
最后才得到
,如果求loss,则要做一步
tf.reduce_mean操作,对向量求均值!
import tensorflow as tf logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
y=tf.nn.softmax(logits)
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #交叉熵公式
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_))#代入函数 with tf.Session() as sess:
softmax=sess.run(y)
c_e = sess.run(cross_entropy)
c_e2 = sess.run(cross_entropy2)
print("step1:softmax result=")
print(softmax)
print("step2:cross_entropy result=")
print(c_e)
print("Function(softmax_cross_entropy_with_logits) result=")
print(c_e2)
step1:softmax result=
[[0.09003057 0.24472848 0.66524094]
[0.09003057 0.24472848 0.66524094]
[0.09003057 0.24472848 0.66524094]]
step2:cross_entropy result=
1.222818
Function(softmax_cross_entropy_with_logits) result=
1.2228179
1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))的更多相关文章
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...
- tf.nn.softmax_cross_entropy_with_logits的用法
http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...
- tf.nn.softmax_cross_entropy_with_logits 分类
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...
- tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits
tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...
- 关于 tf.nn.softmax_cross_entropy_with_logits 及 tf.clip_by_value
In order to train our model, we need to define what it means for the model to be good. Well, actuall ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- TensorFlow:tf.reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
转载:https://www.cnblogs.com/yuzhuwei/p/6986171.html 1.概述 在深度学习里研究的物体的关系,都是比较复杂的.比如一个图片32X32大小的,它的像素信息 ...
- TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu
import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activat ...
随机推荐
- 设备树DTS 学习:4-编写实战
背景 讲完设备树的有关概念以及语法以后,我们接下来就让 我们的驱动 使用 设备树. ref : <内核学习笔记14:内核设备树学习>.<u-boot对设备树的支持> 测试代码 ...
- DNS 访问 Service【转】
在 Cluster 中,除了可以通过 Cluster IP 访问 Service,Kubernetes 还提供了更为方便的 DNS 访问. kubeadm 部署时会默认安装 kube-dns 组件. ...
- 【LeetCode】三角形最小路径和
[问题]给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上.例如,给定三角形: [ [], [,], [,,], [,,,] ] 自顶向下的最小路径和为 (即, + + + ...
- 让SVG以组件的方式引入吧!
安装 npm i -D vue-svg-loader or yarn add -D vue-svg-loader webpack 配置 module.exports = { module: { rul ...
- java核心-多线程(9)- ThreadLocal类
1.背景 ThreadLocal类我想一般的码农或初级程序员在平时开发中基本上接触不到,但是面试老师会问.往高级点走会遇到这个类.这个类不是为了解决资源的竞争问题,而是为每个线程提供同一个容器 ...
- Educational Codeforces Round 63 选做
D. Beautiful Array 题意 给你一个长度为 \(n\) 的序列.你可以选择至多一个子段,将该子段所有数乘上给定常数 \(x\) .求操作后最大的最大子段和. 题解 考虑最大子段和的子段 ...
- angularJS MVC及$scope作用域
- DCGAN增强图片数据集
DCGAN增强图片数据集 1.Dependencies Python 3.6+ PyTorch 0.4.0 numpy 1.14.1, matplotlib 2.2.2, scipy 1.1.0 im ...
- SDRAM调试总结
SDRAM的调试总结 1 说明 实验平台: JZ2440 CPU: S3C2440 SDRAM型号: EM63A165TS-6G 2 SDRAM的一些基本概念 2.1 引脚分配 2.2 引脚描 ...
- (五)微信小程序的跳转
我们在微信页面往往有点击一个图片就可以跳转的情况,接下来我们就学习一下这个功能 一 js版本--bindtap 实现跳转 1. 首先我们先写一个跳转的按钮(在index.wxml) <view ...