HDU3686 Traffic Real Time Query【缩点+lca】
题目
City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, the mayor plans to build a RTQS (Real Time Query System) to monitor all traffic situations. City C is made up of N crossings and M roads, and each road connects two crossings. All roads are bidirectional. One of the important tasks of RTQS is to answer some queries about route-choice problem. Specifically, the task is to find the crossings which a driver MUST pass when he is driving from one given road to another given road.
Input
There are multiple test cases.
For each test case:
The first line contains two integers N and M, representing the number of the crossings and roads.
The next M lines describe the roads. In those M lines, the i th line (i starts from 1)contains two integers X i and Y i, representing that road i connects crossing X i and Y i (X i≠Y i).
The following line contains a single integer Q, representing the number of RTQs.
Then Q lines follows, each describing a RTQ by two integers S and T(S≠T) meaning that a driver is now driving on the roads and he wants to reach roadt . It will be always at least one way from roads to roadt.
The input ends with a line of “0 0”.
Please note that: 0<N<=10000, 0<M<=100000, 0<Q<=10000, 0<X i,Y i<=N, 0<S,T<=M
Output
For each RTQ prints a line containing a single integer representing the number of crossings which the driver MUST pass.
Sample Input
5 6
1 2
1 3
2 3
3 4
4 5
3 5
2
2 3
2 4
0 0
Sample Output
0 1
分析
大概的题目意思就是给个无向图,问从a到b的路径中有几个点必须经过。
思路:根据题意,很容易就可以想到这个题就是求a到b的路径上割点的个数。然后就可以开始缩点了。把边缩成一个点,因为每条边有且仅属于一个联通块中,然后对割点和它相邻的块建边,这样就构造了一棵树。询问a边和b边,只需要找出它们分别属于哪个块中就行,所以问题转化成了一棵树中,有些点标记了是割点,现在询问两个不为割点的点路径上有多少个割点。
这样就很容易做了,以任意一个点为树根,求出每个点到树根路径上有多少个割点,然后对于询问的两个点求一次LCA就可以求出结果了,有点小细节不多说,自己画个图就清楚了。
注意:缩点后树的点数可能是2n个。
代码
#include<cstdio>
#include <vector>
#include <algorithm>
using namespace std; const int maxn = + ;
const int maxm = + ; struct Edge {
int u, to, next, vis, id;
}edge[maxm<<]; int head[maxn<<], dfn[maxn<<], low[maxn], st[maxm], iscut[maxn], subnet[maxn], bian[maxm];
int E, time, top, btot;
vector<int> belo[maxn];
void newedge(int u, int to) {
edge[E].u = u;
edge[E].to = to;
edge[E].next = head[u];
edge[E].vis = ;
head[u] = E++;
} void init(int n) {
for(int i = ;i <= n; i++) {
head[i] = -;
dfn[i] = iscut[i] = subnet[i] = ;
belo[i].clear();
}
E = time = top = btot = ;
} void dfs(int u) {
dfn[u] = low[u] = ++time;
for(int i = head[u];i != -;i = edge[i].next) {
if(edge[i].vis) continue;
edge[i].vis = edge[i^].vis = ;
int to = edge[i].to;
st[++top] = i;
if(!dfn[to]) {
dfs(to);
low[u] = min(low[u], low[to]);
if(low[to] >= dfn[u]) {
subnet[u]++;
iscut[u] = ;
btot++;
do {
int now = st[top--];
belo[edge[now].u].push_back(btot);
belo[edge[now].to].push_back(btot);
bian[edge[now].id] = btot;
to = edge[now].u;
}while(to != u);
}
}
else
low[u] = min(low[u], low[to]);
}
} int B[maxn<<], F[maxn<<], d[maxn<<][], pos[maxn<<], tot, dep[maxn<<];
bool treecut[maxn<<];
void RMQ1(int n) {
for(int i = ;i <= n; i++) d[i][] = B[i];
for(int j = ;(<<j) <= n; j++)
for(int i = ;i + j - <= n; i++)
d[i][j] = min(d[i][j-], d[i + (<<(j-))][j-]);
} int RMQ(int L, int R) {
int k = ;
while((<<(k+)) <= R-L+) k++;
return min(d[L][k], d[R-(<<k)+][k] );
} int lca(int a, int b) {
if(pos[a] > pos[b]) swap(a, b);
int ans = RMQ(pos[a], pos[b]);
return F[ans];
} // 搜树来构造RMQ LCA
void DFS(int u) {
dfn[u] = ++time;
B[++tot] = dfn[u];
F[time] = u;
pos[u] = tot;
for(int i = head[u];i != -;i = edge[i].next){
int to = edge[i].to;
if(!dfn[to]) {
if(treecut[u])
dep[to] = dep[u] + ;
else
dep[to] = dep[u];
DFS(to);
B[++tot] = dfn[u];
}
}
} void solve(int n) {
for(int i = ;i <= n; i++) {
dfn[i] = ;
}
time = tot = ;
for(int i = ;i <= n; i++) if(!dfn[i]) {
dep[i] = ;
DFS(i);
}
RMQ1(tot);
int m, u, to;
scanf("%d", &m);
while(m--) {
scanf("%d%d", &u, &to);
u = bian[u]; to = bian[to];
if(u < || to < ) {
printf("0\n"); continue;
}
int LCA = lca(u, to);
if(u == LCA)
printf("%d\n", dep[to] - dep[u] - treecut[u]);
else if(to == LCA)
printf("%d\n", dep[u] - dep[to] - treecut[to]);
else
printf("%d\n", dep[u] + dep[to] - *dep[LCA] - treecut[LCA]);
}
} int main() {
int n, m, u, to;
while(scanf("%d%d", &n, &m) != - && n){
init(n);
for(int i = ;i <= m; i++) {
scanf("%d%d", &u, &to);
edge[E].id = i;
newedge(u, to);
edge[E].id = i;
newedge(to, u);
} for(int i = ;i <= n;i ++) if(!dfn[i]) {
dfs(i);
subnet[i]--;
if(subnet[i] <= ) iscut[i] = ;
}
int ditot = btot;
for(int i = ;i <= btot; i++) treecut[i] = ;
for(int i = ;i <= btot+n; i++) head[i] = -;
E = ;
for(int i = ;i <= n; i++) if(iscut[i]) {
sort(belo[i].begin(), belo[i].end());
ditot++;
treecut[ditot] = ;
newedge(belo[i][], ditot);
newedge(ditot, belo[i][]);
for(int j = ;j < belo[i].size(); j++) if(belo[i][j] != belo[i][j-]) {
newedge(belo[i][j], ditot);
newedge(ditot, belo[i][j]);
}
}
solve(ditot);
}
return ;
}
HDU3686 Traffic Real Time Query【缩点+lca】的更多相关文章
- CH#24C 逃不掉的路 和 HDU3686 Traffic Real Time Query System
逃不掉的路 CH Round #24 - 三体杯 Round #1 题目描述 现代社会,路是必不可少的.任意两个城镇都有路相连,而且往往不止一条.但有些路连年被各种XXOO,走着很不爽.按理说条条大路 ...
- HDU3686 Traffic Real Time Query System 题解
题目 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, t ...
- HDU3686 Traffic Real Time Query
按照vdcc缩点之后一条边只会属于一个新的点集,由于这棵树上满足(不是割点) - (割点) - (不是割点)的连接方法,所以求两条边之间的必经点就是(树上距离 / 2),倍增跳lca即可 考虑到缩点后 ...
- HDU3686 Traffic Real Time Query System
P.S.此题无代码,只有口胡,因为作者码炸了. 题目大意 给你一个有 \(n\) 个点, \(m\) 条边的无向图,进行 \(q\) 次询问,每次询问两个点 \(u\) \(v\),输出两个点的之间的 ...
- UVALive-4839 HDU-3686 Traffic Real Time Query System 题解
题目大意: 有一张无向连通图,问从一条边走到另一条边必定要经过的点有几个. 思路: 先用tarjan将双连通分量都并起来,剩下的再将割点独立出来,建成一棵树,之后记录每个点到根有几个割点,再用RMQ求 ...
- 边的双联通+缩点+LCA(HDU3686)
Traffic Real Time Query System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- HDU 3686 Traffic Real Time Query System (图论)
HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...
- HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)
Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...
- Traffic Real Time Query System 圆方树+LCA
题目描述 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, ...
随机推荐
- Java实现旅行商问题
1 问题描述 何为旅行商问题?按照非专业的说法,这个问题要求找出一条n个给定的城市间的最短路径,使我们在回到触发的城市之前,对每个城市都只访问一次.这样该问题就可以表述为求一个图的最短哈密顿回路的问题 ...
- java实现三角螺旋阵
方阵的主对角线之上称为"上三角". 请你设计一个用于填充n阶方阵的上三角区域的程序.填充的规则是:使用1,2,3-.的自然数列,从左上角开始,按照顺时针方向螺旋填充. 例如:当n= ...
- java实现第四届蓝桥杯危险系数
危险系数 抗日战争时期,冀中平原的地道战曾发挥重要作用. 地道的多个站点间有通道连接,形成了庞大的网络.但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系. 我们来定义一个危险系数DF( ...
- Mybatis多表操作
一:引言 在学习完前面的mybatis基本语法后,大家都有个认知,这个Mybatis太强大了,比之前使用JDBC写方便多了,但是你们当初在使用原生JDBC写SQL查询的时候有没有遇到过多表查询呢?肯定 ...
- CSAPP 5 - 优化程序性能
CSAPP 5 - 优化程序性能 1. 概述 首当其冲的,还是要编写出好的算法和数据结构,优化内部结构 其次才是编写出能让编译器 易优化的,高效的可执行代码.这点在特定的机器上可能有着特定的不同的优化 ...
- 你真的了解EF吗?关于EntityFramework的高级优化
接上一篇文章.现在写程序,做项目不是说功能做完就完事了,在平常的开发过程中对于性能的考虑也是极其重要的. 关于ef的那些事,今天就来说说吧.首先必须得知道.net ef在程序中的五种状态变化过程与原理 ...
- 括号匹配-算法详细题解LeetCode
题目:有效的括号 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. ...
- gitee+picgo搭建个人博客图床
gitee+picgo搭建个人博客图床 准备 首先需要去码云注册一个账号,并新建一个仓库.接着下载PicGO并安装好. 过程 点击左下方的插件设置. image 在搜索框中输入gitee搜索插件,安装 ...
- 在WinForms里嵌入MediaPlayer的一些版本问题, tlbimp导入, 以及不导入而纯用C#+字符串来动态调用.
网上很多写使用WindowsMediaPlayer WMP控件的文章. 大多数都是从工具栏或COM导入. 最近正在做的CEF整合Asp.Net Core Blazor server side的过程中, ...
- 关于adb命令的基本使用
在我们使用adb命令之前,我们要安装一个安卓模拟器(夜神.逍遥.海马王......),这里以夜神安卓模拟器为准(个人推荐,没用过可以使用夜神模拟器). 进入夜神安卓模拟器官网:https://www. ...