[ARC101B]Median of Medians
题目
点这里看题目。
分析
看到中位数,当然会想到二分答案。
考虑检查答案。自然,我们需要找出中位数小于二分值\(k\)的区间的个数。考虑构造一个\(b\):
\]
可以发现,这个\(b\)满足,如果区间\([l,r]\)的中位数小于\(k\),则\(\sum_{i=l}^r b_i>0\)。
现在检查仍然是\(O(n^2)\)的,过不了。考虑优化。
把\(b\)写成前缀和的形式:\(s_i=\sum_{j=1}^i b_j\)。
那么一个区间\([l,r]\)需要被统计就对应着\(s_r-s_{l-1}>0\),也即是\(s_r>s_{l-1}\)。
这是一个顺序对的问题,可以用树状数组统计。时间是\(O(n\log_2n\log_2(\max a))\)
需要注意的有:
1. 注意统计\([1,r]\)形式的区间,也即是统计\(s_r>0\)的情况。
2. 注意树状数组下标为正。
3. 注意总共有\(\frac {n(n+1)}{2}\)个区间。
代码
#include <cstdio>
typedef long long LL;
#define int LL
const int MAXN = 1e5 + 5;
template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
}
template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
}
template<typename _T>
_T MAX( const _T a, const _T b )
{
return a > b ? a : b;
}
template<typename _T>
_T MIN( const _T a, const _T b )
{
return a < b ? a : b;
}
int BIT[MAXN];
int a[MAXN], s[MAXN];
int N;
int lowbit( const int &x ) { return x & ( -x ); }
void update( int x, const int v ) { for( ; x <= N ; x += lowbit( x ) ) BIT[x] += v; }
int getSum( int x ) { int ret = 0; while( x ) ret += BIT[x], x -= lowbit( x ); return ret; }
bool chk( const int len )
{
LL ret = 0; int mn = N;
for( int i = 1 ; i <= N ; i ++ ) s[i] = a[i] >= len ? -1 : 1;
for( int i = 1 ; i <= N ; i ++ ) s[i] += s[i - 1], ret += s[i] > 0, mn = MIN( mn, s[i] );
for( int i = 1 ; i <= N ; i ++ ) BIT[i] = 0, s[i] += 1 - mn;
for( int i = 1 ; i <= N ; i ++ ) ret += getSum( s[i] - 1 ), update( s[i], 1 );
return ret <= 1ll * N * ( N + 1 ) / 4;
}
signed main()
{
int l = 1e9, r = -1;
read( N );
for( int i = 1 ; i <= N ; i ++ ) read( a[i] ), l = MIN( l, a[i] ), r = MAX( r, a[i] );
int mid;.
while( r - l > 1 )
{
if( chk( mid = l + r >> 1 ) ) l = mid;
else r = mid - 1;
}
if( chk( r ) ) write( r );
else write( l );
putchar( '\n' );
return 0;
}
[ARC101B]Median of Medians的更多相关文章
- AtCoder - 4351 Median of Medians(二分+线段树求顺序对)
D - Median of Medians Time limit : 2sec / Memory limit : 1024MB Score : 700 pointsProblem Statement ...
- AtCoder Regular Contest 101 (ARC101) D - Median of Medians 二分答案 树状数组
原文链接https://www.cnblogs.com/zhouzhendong/p/ARC101D.html 题目传送门 - ARC101D 题意 给定一个序列 A . 定义一个序列 A 的中位数为 ...
- [AtCoder ARC101D/ABC107D] Median of Medians
题目链接 题意:给n个数,求出所有子区间的中位数,组成另外一个序列,求出它的中位数 这里的中位数的定义是:将当前区间排序后,设区间长度为m,则中位数为第m/2+1个数 做法:二分+前缀和+树状数组维护 ...
- ARC 101 D - Median of Medians
题面在这里! 这种题只能二分答案把qwwq,直接做根本做不了啊... 首先你需要知道如何通过 一个区间<=x的数有多少个 来判断x和这个区间中位数的关系. 很显然当数有至少 [L/2]+1 个( ...
- AtCoder Regular Contest 101 D - Median of Medians
二分答案 然后前缀和+树状数组来判断这个答案是否大于等于数 如果我们对于一个查询,如果小于这个数令为1,大于这个数领为-1 将所有前缀和放在树状数组中,就可以查询所有sum_{l} < sum_ ...
- AtCoder4351 Median of Medians 二分, 树状数组
题目大意 定义一个从小到大的数列的中位数为第 $ \frac{n}{2}+1 $ 项.求一个序列的所有连续子序列的中位数的中位数. $ (n \leqslant 100000)$ 问题分析 由于\(n ...
- 在vs中跑动ransac
期间遇到很多问题. 记一个最主要的是: LINK2019 无法识别的外部符号,然后某一个函数的函数名 然后是 @@函数名 (@) 大概长成这样.或者还就根本就是 无法识别的外部符号. 解决方案: 我这 ...
- 查找第K小的数 BFPRT算法
出处 http://blog.csdn.net/adong76/article/details/10071297 BFPRT算法是解决从n个数中选择第k大或第k小的数这个经典问题的著名算法,但很多人并 ...
- 【AtCoder】ARC101题解
C - Candles 题解 点燃的一定是连续的一段,枚举左端点即可 代码 #include <bits/stdc++.h> #define enter putchar('\n') #de ...
随机推荐
- netty 实现简单的rpc调用
yls 2020/5/23 netty 实现简单rpc准备 使用netty传输java bean对象,可以使用protobuf,也可以通过json转化 客户端要将调用的接口名称,方法名称,参数列表的类 ...
- 【万字图文-原创】 | 学会Java中的线程池,这一篇也许就够了!
碎碎念 关于JDK源码相关的文章这已经是第四篇了,原创不易,粉丝从几十人到昨天的666人,真的很感谢之前帮我转发文章的一些朋友们. 从16年开始写技术文章,到现在博客园已经发表了222篇文章,大多数都 ...
- Android_存储之SharedPreferences
一.概述 SharedPreferences是一种轻量级的数据存储方式,采用键值对的存储方式. SharedPreferences只能存储少量数据,大量数据不能使用该方式存储,支持存储的数据类型有bo ...
- Android_四大组件之ContentProvider
一.概述 ContentProvider(内容提供者)管理对结构化数据集的访问,它们封装数据,并提供用于定义数据安全性的机制.其他应用,通过Context的ContentResolver对象 作为客户 ...
- [Android应用开发] 03.网络编程
*:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...
- Java集合(八)哈希表及哈希函数的实现方式
Java集合(八)哈希表及哈希函数的实现方式 一.哈希表 非哈希表的特点:关键字在表中的位置和它之间不存在一个确定的关系,查找的过程为给定值一次和各个关键字进行比较,查找的效率取决于和给定值进行比较的 ...
- 实验三 UML 建模工具的安装与使用
UML 建模工具的安装与使用一. 实验目的1) 学习使用 EA(Enterprise Architect) 开发环境创建模型的一般方法: 2) 理解 EA 界面布局和元素操作的一般技巧: 3) 熟悉 ...
- Docker容器同步主机时间
方法一: 查看本地是否有/etc/localtime文件 cat /etc/localtime 如果没有就新建文件 cp /usr/share/zoneinfo/Asia/Shanghai /et ...
- Java 第十一届 蓝桥杯 省模拟赛 户户通电(图算法)
户户通电 题目 问题描述 2015年,全中国实现了户户通电.作为一名电力建设者,小明正在帮助一带一路上的国家通电. 这一次,小明要帮助 n 个村庄通电,其中 1 号村庄正好可以建立一个发电站,所发的电 ...
- Java实现 LeetCode 726 原子的数量(递归+HashMap处理)
726. 原子的数量 给定一个化学式formula(作为字符串),返回每种原子的数量. 原子总是以一个大写字母开始,接着跟随0个或任意个小写字母,表示原子的名字. 如果数量大于 1,原子后会跟着数字表 ...