题解:原来LCT也能维护子树信息,我太Naive了

用LCT维护当前子树节点个数

具体做法维护siz[x]=当前Splay子树和指向当前Splay子树的虚边所代表的节点个数

auxsiz[x]=指向x节点的虚边代表的节点个数

Link的时候x,y都要makeroot一下(针对我的写法)

然后就在LCT的基础上维护auxsiz即可

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=100009; int n,TT; int fa[maxn]={0},ch[maxn][2]={0},siz[maxn]={0},auxsiz[maxn]={0},rev[maxn]={0};
inline bool isroot(int x){
return (ch[fa[x]][0]!=x)&&(ch[fa[x]][1]!=x);
}
inline void pushup(int x){
siz[x]=siz[ch[x][0]]+siz[ch[x][1]]+1+auxsiz[x];
}
inline int son(int x){
if(ch[fa[x]][0]==x)return 0;
else return 1;
}
inline void pushdown(int x){
if(rev[x]){
rev[x]^=1;
rev[ch[x][0]]^=1;
rev[ch[x][1]]^=1;
swap(ch[x][0],ch[x][1]);
}
}
void Downfa(int x){
if(!isroot(x))Downfa(fa[x]);
pushdown(x);
} inline void Rotate(int x){
int y=fa[x];
int z=fa[y];
int b=son(x),c=son(y);
int a=ch[x][b^1];
if(!isroot(y))ch[z][c]=x;
fa[x]=z;
if(a)fa[a]=y;
ch[y][b]=a;
fa[y]=x;ch[x][b^1]=y;
pushup(y);pushup(x);
} void Splay(int x){
Downfa(x);
while(!isroot(x)){
int y=fa[x];
if(isroot(y)){
Rotate(x);
}else{
if(son(x)==son(y)){
Rotate(y);Rotate(x);
}else{
Rotate(x);Rotate(x);
}
}
}
} void Access(int x){
for(int t=0;x;){
Splay(x);
auxsiz[x]+=siz[ch[x][1]];
auxsiz[x]-=siz[t];
ch[x][1]=t;
pushup(x);
t=x;x=fa[x];
}
}
void Makeroot(int x){
Access(x);Splay(x);rev[x]^=1;
}
void Link(int x,int y){
Makeroot(x);Makeroot(y);fa[x]=y;
auxsiz[y]+=siz[x];pushup(y);
}
void Cut(int x,int y){
Makeroot(x);Access(y);Splay(y);
fa[ch[y][0]]=0;ch[y][0]=0;
pushup(y);
} int main(){
scanf("%d%d",&n,&TT);
for(int i=1;i<=n;++i)siz[i]=1;
while(TT--){
char opty=getchar();
int x,y;
while(opty!='Q'&&opty!='A')opty=getchar();
scanf("%d%d",&x,&y);
if(opty=='A'){
Link(x,y);
}else{
Cut(x,y);
Splay(x);Splay(y);
printf("%lld\n",1LL*siz[x]*siz[y]);
Link(x,y);
}
}
return 0;
}

  

luogu P4219 [BJOI2014]大融合的更多相关文章

  1. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

  2. 洛谷 P4219 [BJOI2014]大融合 解题报告

    P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...

  3. 洛谷P4219 - [BJOI2014]大融合

    Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...

  4. 洛谷P4219 [BJOI2014]大融合(LCT,Splay)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  5. 洛谷P4219 [BJOI2014]大融合(LCT)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  6. P4219 [BJOI2014]大融合

    传送门 动态维护森林 显然考虑 $LCT$ 但是发现询问求的是子树大小,比较不好搞 维护 $sum[x]$ 表示节点 $x$ 的子树大小,$si[x]$ 表示 $x$ 的子树中虚儿子的子树大小和 那么 ...

  7. P4219 [BJOI2014]大融合 LCT维护子树大小

    \(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...

  8. 洛谷 P4219 [BJOI2014]大融合

    查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") # ...

  9. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

随机推荐

  1. Java常考面试题(二)(转)

    序言 昨天刚开始的"每日5题面试"这类文章,感觉还不错,把一些平常看似懂了的东西,弄清楚了.就像什么是虚拟机?这个问题,看起来知道,但是要说出个所以然来,又懵逼了,经常回过头来看看 ...

  2. 文献阅读报告 - Social BiGAT + Cycle GAN

    原文文献 Social BiGAT : Kosaraju V, Sadeghian A, Martín-Martín R, et al. Social-BiGAT: Multimodal Trajec ...

  3. 你从未见过的Case Study写作指南

    Case Study,意为案例分析,Case Study与其它的留学论文作业最大的的差别就在于Case Study在论文开始就需要明确给出论,然后再阐述这个结论的论证依据和理由.留学生们需要知道的是C ...

  4. tab选项卡,不带自动切换定时器

    <!DOCTYPE html> <html> <head> <meta http-equiv="content-type" content ...

  5. USB2.0主机控制器 UPD720114 简单详解

    UPD720114 是符合 USB 2.0规格的集线器控制器,适用于“符合生态原则的解决方案”.这种小型封装的控制器集成了核心逻辑电路的2.5 V 内部电压调整器.终端电阻器,减少了所需要的外部组件的 ...

  6. python 首先生成包含1000个随机字符的字符串,然后统计每个字符的出现次数

    题目:首先生成包含1000个随机字符的字符串,然后统计每个字符的出现次数 import string import random x = string.ascii_letters + string.d ...

  7. Solve Error: Could not find the certificate xxxx.com. at ServerlessCustomDomain.<anonymous>

    When runs "serverless create_domain", we may get the following error: Could not find the c ...

  8. vuejs+thinkphp5+phpsocketIO+timer数据及时更新

    1.安装thinkphp5.0以上版本包含workerman框架2.composer安装composer require workerman/phpsocket.io3.vue中调用需要加载weapp ...

  9. Flutter如何引用第三方库并使用

    Flutter如何引用第三方库并使用 https://www.jianshu.com/p/bbda7794345e Flutter官网点击访问Flutter教程(一)Flutter概览Flutter教 ...

  10. 【BZOJ2400】Optimal Marks

    题意 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有 \(n\) 个结点 \(m\) 条边的无向图.其中的一些点的值是给定的 ...