洛谷题目传送门

题目描述

有n架飞机需要着陆。每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种。第i架飞机的早着陆时间为Ei,晚着陆时间为Li,不得在其他时间着陆。你的任务是为这些飞机安排着陆方式,使得整个着陆计划尽量安全。换句话说,如果把所有飞机的实际着陆时间按照从早到晚的顺序排列,相邻两个着陆时间间隔的最值(称为安全间隔)应尽量大。

输入格式

输入包含若干组数据。每组数据第一行为飞机的数目n。以下n行每行两个整数,即早着陆时间和晚着陆时间。所有时间t 满足0<=t<=10^7。输入结束标志为文件结束符(EOF)。

输出格式

对于每组数据,输出安全间隔的最大值。(记得换行)

输入输出样例

输入
10
44 156
153 182
48 109
160 201
55 186
54 207
55 165
17 58
132 160
87 197
 
 
输出
 10

  

说明/提示

n <= 2000; 剩下的所有数据保证不超过int范围

首先,从题目的要求来看,xxxx尽量大,xxxx尽量小,一般这种要求我们可以考虑二分查找答案。(套路)

于是,题目就成了判定:是否能使相邻的着陆时间不小于P,即我们目前二分枚举的时间。

继续看题,每种飞机有两种着陆方式:早着陆和晚着陆,考虑分别用0和1表示。

对于这种含有“或”的题,考虑用2—SAT问题进行求解。

建图:

  每一个节点v表示一种选择,一架飞机我们可以拆成两个点:早   与    晚。

   枚举每架飞机和它后面飞机的情况:如果两个时间相差小于P,则连边,表明选择第一种情况就必须选择第二种情况。(在枚举的时候应用for循环从小到大,优先早着陆,尽量贴近P,防止浪费时间)。

跑图:

  建好图之后,要做的就是跑图了。如何跑?当然是直接套用2—SAT问题的模板:用Tarjan强联通算法.

   如建图中所说,我们的‘边’代表的是必须选择。那么,如果我们选择一架飞机的“0”,然后经过一系列传导,又必须选择‘1’,怎么办?(凉拌)

           如果出现这种情况,自相矛盾,那么,原问题肯定无解!!!

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + ; struct edge{
int u,v,next;
}e[maxn << ];
//全部开两倍!!!有两倍的点
int f[maxn << ],low[maxn << ],dfn[maxn << ];
int scc[maxn << ];
bool vis[maxn << ];
int n,cac,cnt,m,top;
stack <int> stack1;
int T[maxn][]; void clean(){//不要被吓到了
for(int i = ;i <= * n; i++){
f[i] = dfn[i] = ;
}
cac = ;
top = ;
return;
} int jueduizhi(int x){
if(x < )x = -x;
return x;
} //-------------------------以下才是重点 void add(int u,int v){
top++;
e[top].u = u;//这个点(起点)
e[top].v = v;//它连向的那个点(终点)
e[top].next = f[u];
f[u] = top;
return;
} void tarjan(int now){
low[now] = dfn[now] = ++cac;//初始化用的
stack1.push(now);
vis[now] = ;
for(int i = f[now]; i ; i = e[i].next){
int v = e[i].v;//有连边
if(!dfn[v]){
tarjan(v);
low[now] = min(low[now],low[v]);
}else if(vis[v])
low[now] = min(low[now],dfn[v]);
}
if(low[now] == dfn[now]){
int cur;
cnt++;//是第几个强连通 ??
do{
cur = stack1.top();
stack1.pop();
vis[cur] = ;
scc[cur] = cnt;//记录每个点所在的强连通
}while(now != cur);
}
} bool two_SAT(){
for(int i = ; i <= * n; i++)
if(!dfn[i] )
tarjan(i);//tarjan找强连通分量
for(int i = ; i <= n; i++)
if(scc[i] == scc[i + n])return ;
//a条件和非a条件在同一个强连通分量,原问题无解
return ;
} bool test(int diff){
clean();
for(int i = ;i <= n; i++)//枚举每架飞机
for(int aval = ;aval < ; aval++)//早还是晚?
for(int j = i + ;j <= n; j++)//往下枚举后面的飞机
for(int bvbl = ;bvbl < ; bvbl++){//一样,分两种情况
if(jueduizhi(T[i][aval] - T[j][bvbl]) < diff){
int a = i,b = j;
int nota = aval ^ ,notb = bvbl ^ ;
add(a + nota * n,b + bvbl * n);
add(b + notb * n,a + aval * n);
}
}
return two_SAT();
} int main(){
// freopen("hh.txt","r",stdin);
while(scanf("%d",&n) != EOF && n){
int l = ,r = ;
for(int i = ;i <= n; i++)
for(int a = ;a < ; a++){
scanf("%d",&T[i][a]);
r = max(r,T[i][a]);
}
while(l < r){
int mid = l + (r - l + ) / ;//必须向上取整,不然全部爆0
//int mid = l + r >> 1;
if(test(mid)) l = mid;
else r = mid - ;
}
printf("%d\n",l);
}
return ;
}

   luogu那道题是自己手打上传的,数据可能有点毒瘤。。。

飞机调度 Now or Later? LA 3211 (2-SAT问题)的更多相关文章

  1. LA 3211 飞机调度

    题目链接:http://vjudge.net/contest/142615#problem/A 题意:n架飞机,每架可选择两个着落时间.安排一个着陆时间表,使得着陆间隔的最小值最大. 分析: 最小值最 ...

  2. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  3. 【LOJ】#2077. 「JSOI2016」飞机调度

    题解 考虑一架飞机飞完自己之后还能飞到哪些航线,用floyd求两点最短路 这个图建出来是个DAG,求最小路径覆盖即可,二分图匹配 注意判断时是航班的起飞时刻+直飞时间+加油时间+最短路时间 代码 #i ...

  4. 【LA3211 训练指南】飞机调度 【2-sat】

    题意 有n嫁飞机需要着陆.每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种.第i架飞机的早着陆时间为Ei,晚着陆时间为Li,不得在其他时间着陆.你的任务是为这些飞机安排着陆方式,使 ...

  5. LA3211 飞机调度 Now or later-二分法&TwoSet

    https://vjudge.net/problem/UVALive-3211 As you must have experienced, instead of landing immediately ...

  6. LA 3211

    As you must have experienced, instead of landing immediately, an aircraft sometimes waits in a holdi ...

  7. BZOJ 4853 [Jsoi2016]飞机调度

    题解: 我严重怀疑语文水平(自己的和出题人的) 把航线按照拓扑关系建立DAG 然后最小路径覆盖 为什么两条首尾相接航线之间不用维护???? #include<iostream> #incl ...

  8. 2-SAT 问题与解法小结

    2-SAT 问题与解法小结 这个算法十分的奇妙qwq... 将一类判定问题转换为图论问题,然后就很容易解决了. 本文有一些地方摘录了一下赵爽<2-SAT解法浅析> (侵删) 一些概念: \ ...

  9. (纪录片)现代生活的秘密规则:算法 The Secret Rules of Modern Living: Algorithms

    简介: The Secret Rules of Modern Living: Algorithms (2015) 导演: David Briggs主演: Marcus du Sautoy类型: 纪录片 ...

随机推荐

  1. Codeforce 263D Cycle in Graph 搜索 图论 哈密尔顿环

    You've got a undirected graph G, consisting of n nodes. We will consider the nodes of the graph inde ...

  2. 一个简单的wed服务器SHTTPD(9)————main函数文件,Makefile,头文件

    主函数: #include "lcw_shttpd.h" //初始化时服务器的默认配置 extern struct conf_opts conf_para= { "/us ...

  3. Spring MVC的Controller接受请求方式以及编写请求处理方法

    Controller接受请求参数的常见方法: 1.通过Bean接受请求参数: 创建POJO实体类 创建pojo包,并在该包中创建实体类UserForm,代码: package pojo; public ...

  4. 70行实现Promise核心源码

    70行实现Promise核心源码 前言: ​ 一直以来都是只会调用Promise的API,而且调API还是调用axios封装好的Promise,太丢人了!!!没有真正的去了解过它的原理是如何实现的,自 ...

  5. OSG程序设计之osg::NodeVisitor

    本文所有内容来自<OpenSceneGraph三维渲染引擎设计与实践>一书. 本文主要讨论的是OSG中节点的访问. 对于节点的访问是从节点接收一个访问器开始的,用户执行某个节点的accep ...

  6. SPFA+链式前向星

    板子 #include <bits/stdc++.h> using namespace std; typedef long long ll; const ll inf=2<<3 ...

  7. B. Heaters 思维题 贪心 区间覆盖

    B. Heaters 这个题目虽然只有1500的分数,但是我还是感觉挺思维的,我今天没有写出来,然后看了一下题解 很少做这种区间覆盖的题目,也不是很擅长,接下来讲讲我看完题解后的思路. 题目大意是:给 ...

  8. webpack-常用配置知识点

    webpack配置多页面 webpcak配置多页面需要在entry中配置多个,在plugins中配置多个htmlWebpackPlugin,具体如下 entry:{ "index" ...

  9. uni-app高分开源电影项目源码案例分析,支持一套代码发布小程序、APP平台多个平台(前端入门必看)

    uni-app-Video 一个优秀的uni-app案例,旨在帮助大家更快的上手uni-app,共同进步! Features ​ 代码编写简洁,注释清晰,快速入门必备: 支持在线模糊搜索: 程序类目懒 ...

  10. centos下mysql 看不到mysql数据库(密码无法更改)

    1.这可能是因为mysql数据库的user表里,存在用户名为空的账户即匿名账户,导致登录的时候是虽然用的是root,但实际是匿名登录的 2.解决方案 2.1.关闭mysql service mysql ...