题解 P3870 【[TJOI2009]开关】/基础分块学习小结
直接进入正题:
分块:
分块分块,就是把一个长串东西,分为许多块,这样,我们就可以在操作一个区间的时候,对于在区间里面完整的块,直接操作块,不完整的直接操作即可,因为不完整,再加上一个块本身就不大,复杂度会很小的,然后需要输出的时候,单点输出直接把本来自身的值加上对块的操作加起来即可,而对于区间询问,格外在维护一个区间总和数组即可。那么问题来了:分为几块呢? 答案是当大小为\(n\)的序列,分为\(\sqrt{n}\),因为对于上述的操作,设块数为\(k\),复杂度是为\(O(\frac{n}{k}+k)\)的,根据计算,可以得出\(k\)为\(\sqrt{n}\)时复杂度最优。
下面给出例题来讲解吧\(qwq\)。
例题:开关
这道题就是一个区间修改+区间查询的裸题了,他操作一次,就相当于加一次,看最后mod2为几,1则是开着的,0则是关着的。然后还有一个点,对于区间操作时,我们维护一个\(ans_i\)代表第\(i\)块块的总开灯数,如果这一个块都被操作了,就可以\(ans_i=sq-ans_i\),\(sq\)为块的大小,是一个定值,就是\(\sqrt{n}\)(因为分为了\(\sqrt{n}\)块嘛,一块大小当然也为\(\sqrt{n}\)咯)。
\(code\)时间:
#include <bits/stdc++.h>
using namespace std;
int n , m , sq;
int a[100010] , f[100010] , tag[10010] , ans[10010]; //a存放灯泡是否开着的,f为当前的位置为第几块,tag是区间标记,ans就是区间和
void work(int x , int y){
for(int i = x; i <= min(y , f[x] * sq)/*有可能不构成一块,所以取min*/; i++){
if((a[i] + tag[f[i]]/*!!!这里一定要加上标记,调了好久*/) % 2) ans[f[i]]--; //为开着的关上后就是-1
else ans[f[i]]++;
a[i]++;
}
if(f[x] != f[y]) //在一块就说明区间不构成一块
for(int i = (f[y] - 1) * sq + 1; i <= y; i++){
if((a[i] + tag[f[i]]) % 2) ans[f[i]]--;
else ans[f[i]]++;
a[i]++;
}
for(int i = f[x] + 1; i <= f[y] - 1; i++){ //两边的前面已经处理过了
ans[i] = sq - ans[i];
tag[i]++;
}
}
int sum(int x , int y){
int k = 0;
for(int i = x; i <= min(y , f[x] * sq); i++) if((a[i] + tag[f[i]]) % 2) k++;
if(f[x] != f[y]) for(int i = (f[y] - 1) * sq + 1; i <= y; i++) if((a[i] + tag[f[i]]) % 2) k++;
for(int i = f[x] + 1; i <= f[y] - 1; i++) k += ans[i];
return k;
}
int main(){
cin >> n >> m;
sq = sqrt(n);
for(int i = 1; i <= n; i++) f[i] = (i - 1) / sq + 1; //标记某一个点是哪一块的
while(m--){
int x , y;
cin >> x;
if(!x){
cin >> x >> y;
work(x , y);
}else{
cin >> x >> y;
cout << sum(x , y) << endl;
}
}
return 0;
}
我讲的很差对吧,这应该只是作为我的应该记录吧,如果真的要学习分块,去看hzwer大佬的分块九讲吧,非常清晰。
题解 P3870 【[TJOI2009]开关】/基础分块学习小结的更多相关文章
- objective-c基础教程——学习小结
objective-c基础教程——学习小结 提纲: 简介 与C语言相比要注意的地方 objective-c高级特性 开发工具介绍(cocoa 工具包的功能,框架,源文件组织:XCode使用介绍) ...
- 洛谷 P3870 [TJOI2009]开关 题解
原题链接 前置知识: 线段树的单点.区间的修改与查询. 一看,我们需要维护两个操作: 区间取反: 区间求和. (因为区间 \(1\) 的个数,就是区间的和) 典型的 线段树 . 如果你只会线段树的 区 ...
- 洛谷 P3870 [TJOI2009]开关
题意简述 有n盏灯,默认为关,有两个操作: 1.改变l~r的灯的状态(把开着的灯关上,关着的灯打开) 2.查询l~r开着的灯的数量 题解思路 维护一个线段树,支持区间修改,区间查询 懒标记每次^1 代 ...
- Luogu3870 [TJOI2009]开关 (分块)
线段树做法很简单,但分块好啊 #include <iostream> #include <cstdio> #include <cstring> #include & ...
- P3870 [TJOI2009]开关
思路 重题 代码 #include <iostream> #include <vector> #include <cstdio> #include <cstr ...
- JavaWeb基础—XML学习小结
一.概述 是什么? 指可扩展标记语言 能干什么? 传输和存储数据 怎么干? 需要自行定义标签. XML 独立于硬件.软件以及应用程序 通常.建立完xml文件后首要的任务是:引入约束文件! 二.XML简 ...
- JavaWeb基础—JS学习小结
JavaScript是一种运行在浏览器中的解释型的编程语言 推荐:菜鸟教程一.简介js:javascript是基于对象[哪些基本对象呢]和和事件驱动[哪些主要事件呢]的语言,应用在客户端(注意与面向对 ...
- JavaWeb基础—CSS学习小结
重点记忆:四种结合方式 三种基本选择器 1.CSS:层叠样式表 相当于皮肤 提高了可维护性.样式与内容分离(注释格式/* */) 2.CSS与HTML结合的四种方式:内联式.嵌入式.外部式 1.每个 ...
- 洛谷P3870 [TJOI2009]开关
题目描述 现有\(N(2 ≤ N ≤ 100000)\)盏灯排成一排,从左到右依次编号为:\(1,2,......,N\).然后依次执行\(M(1 ≤ M ≤ 100000)\)项操作,操作分为两种: ...
随机推荐
- Java实现 LeetCode 912 排序数组(用数组去代替排序O(N))
912. 排序数组 给你一个整数数组 nums,将该数组升序排列. 示例 1: 输入:nums = [5,2,3,1] 输出:[1,2,3,5] 示例 2: 输入:nums = [5,1,1,2,0, ...
- Java实现 蓝桥杯VIP 算法训练 回文数
import java.util.Scanner; public class 回文数 { static int time = 0; public static int change(String st ...
- java中ThreadLocal类的详细介绍(详解)
ThreadLocal简介 变量值的共享可以使用public static的形式,所有线程都使用同一个变量,如果想实现每一个线程都有自己的共享变量该如何实现呢?JDK中的ThreadLocal类正是为 ...
- DEV控件之TreeList使用
绑定DataTable 直接设置DataSource即可,同时需要设置KeyFieldName和ParentFieldName两个属性,好处就是,无需像TreeView一样去递归节点,设置了这两个属性 ...
- golang连接达梦数据库的一个坑
golang连接达梦数据库的一个坑 有一次项目中用到了达梦数据库,后端语言使用的golang,达梦官方并未适配专门的golang连接方式,正一筹莫展的时候发现达梦提供了odbc的连接,这样可以使用类似 ...
- input搜索框的搜索功能
如图,想要实现输入关键词,点击搜索按钮或者回车键都能进行搜索并返回. html部分代码如下: js部分—— function entersearch(){ var event = window.eve ...
- VS2019制作的安装包,默认安装到C盘快捷方式无法打开
先讲讲如何制作安装包 1.下载Visual Studio Installer 1)下载链接https://marketplace.visualstudio.com/items?itemName=Vis ...
- Flutter学习笔记(31)--异步更新UI
如需转载,请注明出处:Flutter学习笔记(31)--异步更新UI 大家都知道,子线程不能操作UI控件,在我们Android的日常开发中,经常会遇到网络请求数据通过线程间通信,将数据发送到UI线程中 ...
- excel如何快速计算日期对应的生肖?
是否可以根据日期统计出生肖? 牛闪闪想应该可以吧!结果搜到了一个巨牛无比的公式. =MID("猴鸡狗猪鼠牛虎兔龙蛇马羊",MOD(YEAR(B2),12)+1,1), 利用年份 ...
- (十)深入理解maven构建生命周期和各种plugin插件
链接:https://blog.csdn.net/zhaojianting/article/details/80321488