「HAOI2011」Problem c

传送门

由于这道题本人讲得不好,可以参考这位dalao的博客

我可就直接上代码了。。。

参考代码:

/*--------------------------------
Code name: D.cpp
Author: The Ace Bee
This code is made by The Ace Bee
--------------------------------*/
#include <cstdio>
#include <cstring>
#define int long long
#define rg register
#define file(x) \
freopen(x".in", "r", stdin); \
freopen(x".out", "w", stdout);
const int $ = 333;
inline int read() {
int s = 0; bool f = false; char c = getchar();
while (c < '0' || c > '9') f |= (c == '-'), c = getchar();
while (c >= '0' && c <= '9') s = (s << 3) + (s << 1) + (c ^ 48), c = getchar();
return f ? -s : s;
}
int n, m, mod;
int c[$][$], cnt[$], sum[$], f[$][$];
inline void getc() {
c[0][0] = 1;
for (rg int i = 1; i <= n; ++i) {
c[i][0] = 1;
for (rg int j = 1; j <= i; ++j)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}
}
inline void plus(int& a, int b) { a = (a + b) % mod; }
signed main() {
// file("D");
for (rg int T = read(); T; --T) {
memset(cnt, 0, sizeof cnt);
memset(f, 0, sizeof f);
n = read(), m = read(), mod = read();
getc();
for (rg int i = 1; i <= m; ++i) read(), ++cnt[read()];
sum[0] = n - m;
bool flag = true;
for (rg int i = 1; i <= n; ++i) {
sum[i] = 1ll * cnt[i] + 1ll * sum[i - 1];
if (sum[i] < i) { flag = false; break; }
}
if (!flag) { puts("NO"); continue; }
f[0][0] = 1;
for (rg int i = 1; i <= n; ++i)
for (rg int j = i; j <= sum[i]; ++j)
for (rg int k = cnt[i]; j - k >= i - 1; ++k)
plus(f[i][j], 1ll * f[i - 1][j - k] * c[sum[i - 1] - j + k][k - cnt[i]]);
printf("YES %lld\n", f[n][n]);
}
return 0;
}

「HAOI2011」Problem c的更多相关文章

  1. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

  2. loj#2483. 「CEOI2017」Building Bridges 斜率优化 cdq分治

    loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(su ...

  3. loj2353. 「NOI2007」 货币兑换

    loj2353. 「NOI2007」 货币兑换 链接 https://loj.ac/problem/2353 思路 题目不重要,重要的是最后一句话 提示 输入文件可能很大,请采用快速的读入方式. 必然 ...

  4. LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配

    #2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  5. LoibreOJ 2042. 「CQOI2016」不同的最小割 最小割树 Gomory-Hu tree

    2042. 「CQOI2016」不同的最小割 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  6. LibreOJ #2006. 「SCOI2015」小凸玩矩阵 二分答案+二分匹配

    #2006. 「SCOI2015」小凸玩矩阵 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  7. 「NOI2018」你的名字

    「NOI2018」你的名字 题目描述 小A 被选为了\(ION2018\) 的出题人,他精心准备了一道质量十分高的题目,且已经 把除了题目命名以外的工作都做好了. 由于\(ION\) 已经举办了很多届 ...

  8. tyvj P2018 「Nescafé26」小猫爬山 解题报告

    P2018 「Nescafé26」小猫爬山 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 Freda和rainbow饲养了N只小猫,这天,小猫们要去爬山.经 ...

  9. LOJ #2585. 「APIO2018」新家

    #2585. 「APIO2018」新家 https://loj.ac/problem/2585 分析: 线段树+二分. 首先看怎样数颜色,正常的时候,离线扫一遍右端点,每次只记录最右边的点,然后查询左 ...

随机推荐

  1. PHP正则表达式常用例子

    "^[0-9]*[1-9][0-9]*$" //正整数"^((-\d+)|(0+))$" //非正整数(负整数 + 0)"^-[0-9]*[1-9][ ...

  2. Java-POJ1000-A+B Problem

  3. bugku 细心

    打开链接会看到提醒404 显示不能访问 然后用御剑 扫描一下 然后会发现另一个 网址 然后打开 发现 有一个/result.php然后改一下 网址会发现 另一个网页 然后利用提示 将链接的后缀名改成? ...

  4. Opencv模块

    参考博客:https://blog.csdn.net/u012679707/article/details/79505279

  5. linux shell let, expr 命令详解

    linux命令之let.exprshell程序中的操作默认都是字符串操作,在运行数学运算符的时候可能得到意想不到的答案: var=1var=$var+1echo $var 将输出 1+1从这个例子中可 ...

  6. 【Python redis】

    目录 基本用法 连接池 基本命令 String Hash List set "下载:pip install redis @ *** 基本用法 redis库提供两个类,Redis和Strict ...

  7. GIT-maven

     maven 一:什么是maven 1.maven是基于项目对象模型(POM),可以通过一小段描述信息来管理项目的创建,报告和文档的软件项目管理工具. 2.maven是跨平台的项目管理工具,主要服务于 ...

  8. tarjan-无向图(求割点)

    一.基本概念 1.割点:无向连通图中,如果删除某点后,图变成不连通,则称改点为割点. 2.桥:无向连通图中,如果去掉某条边后,整张无向图会分成两部分(即整张图不连通),这样的一条边成为桥. 3.点双连 ...

  9. 如何让DOS命令在新窗口打开

    可以调用别外的批处理如 start a.batstart b.batstart c.bat 新建a.bat.B.BAT.C.CAT,在这几个批处理中输入你的命令. 以上我自己测试通过.

  10. 新手指引,php什么是常量、变量、数组、类和对象及方法?

    众所周知,常量.变量.数组.类和对象及方法共同构成了PHP的基石.那么什么是常量?什么是变量?什么是数组?什么是类和对象及方法?我在此谈谈个人浅见,新手指引,高手勿喷. PHP 常量 定义:常量是单个 ...