P2048 【NOI2010】 超级钢琴

2023NOIP A层联测9 风信子

一年 OI 一场空,一道原题见祖宗……

Ps:超级钢琴是风信子的前置题。

超级钢琴

题意

在一段序列上,选择长度为 \(x\) 的区间且 \(x\in [L,R]\),求选择 \(k\) 个区间求和的最大值。

思路

来自洛谷第一篇 Nekroz 的题解。

将区间和变为前缀和,考虑将所有的合法方案的和拉出来排序,时间复杂度不现实,考虑贪心的解决这个问题。

设 \(S(o,l,r)=max(sum[t]-sum[o-1])|l\leq t \leq r\),即以 \(o\) 为左端点,以 \(t\) 为右端点的区间的和。\(sum\) 是前缀和,\(l,r\) 使得 \(t\) 满足题目限制。

维护 \(sum[t]\) 可以使用 \(ST\) 表 \(O(1)\) 维护。

然后考虑贪心。

我们将每次可以选择最优的 \(S(o,l,r)\),选择 \(k\) 次就是我们的结果。

初始时,是 \(n\) 个 \(i\ (i\in [1,n])\) 为起点,终点范围最大的区间,这里可以用优先队列维护(用结构体存 \(S(o,l,r)\),写构造函数比较大小)。

三元组 \(S(o,l,r)\) 选择后,会增加 \(S(o,l,t-1)\) 和 \(S(o,t+1,r)\) 两个答案区间,同时 \(S(o,l,r)\) 这个区间不能再被选中,先弹出不能选的区间,再把这两个玩意丢进堆里。对于 \(l=t\) 或 \(r=t\) 的情况需要特判。

那么这个分裂的正确性在哪里呢?

约定:下文称 \(S(o,l,r)\) 选中后分裂出的三元组为子三元组,\(S(o,l,r)\) 为父三元组。

Q:子三元组有没有可能大于父三元组,导致答案变劣。

A:不难发现,我们分裂出这个三元组的父三元组肯定大于这个三元组(因为起点相同,结束端点父三元组肯定选最大的)。所以只有父三元组被选,子三元组才会被选。

Q:父三元组选择的结束端点影响子三元组的取值,是否存在结束端点使父三元组变略,而使子三元组和父三元组共同的贡献更优。

A:每次三元组本质是一段区间,如果父三元组不选择最大段区间,肯定存在子三元组会选择最大区间,其实分到最后,每一个区间都会出现一次。其实上文的父子三元组单调性也证明了不会出现这种情况。

CODE

#include<bits/stdc++.h>
using namespace std; #define int long long const int maxn=5e5+5; int n,k,l,r;
int sum[maxn]; struct Tree
{
int l,r;
pair<int,int>mx={-1e9,-1e9};
}tree[maxn*10]; void build(int p,int l,int r)
{
tree[p].l=l;
tree[p].r=r;
if(l==r)
{
tree[p].mx=make_pair(sum[l],l);
return ;
}
build(p*2,l,(l+r)>>1);
build(p*2+1,((l+r)>>1)+1,r);
tree[p].mx=max(tree[p*2].mx,tree[p*2+1].mx);
}
pair<int,int> query(int p,int l,int r)
{
if(tree[p].l>r||tree[p].r<l) return make_pair(-1e9,-1e9);
if(l<=tree[p].l&&tree[p].r<=r) return tree[p].mx;
return max(query(p*2,l,r),query(p*2+1,l,r));
} struct element
{
int o,l,r,t;
friend bool operator<(element a,element b){return (sum[a.t]-sum[a.o-1])<(sum[b.t]-sum[b.o-1]);}
};
element gt(int o,int l,int r)
{
return {o,l,r,query(1,l,r).second};
} priority_queue<element>que; signed main()
{
scanf("%lld%lld%lld%lld",&n,&k,&l,&r);
for(int i=1;i<=n;i++)
{
int x;
scanf("%lld",&x);
sum[i]=sum[i-1]+x;
} build(1,1,n);
for(int i=1;i+l-1<=n;i++) que.push(gt(i,i+l-1,min(i+r-1,n))); int ans=0;
while(k--)
{
int o=que.top().o,l=que.top().l,r=que.top().r,t=que.top().t;
que.pop();
ans+=sum[t]-sum[o-1];
if(t!=l) que.push(gt(o,l,t-1));
if(t!=r) que.push(gt(o,t+1,r));
} printf("%lld",ans);
}

风信子

题面

有两种操作

1.选择区间 \([l,r]\) 使 \(i\in [l,r]\) 中的 \(a_i\) 都加上 \(x\)。

2.在区间 \([l,r]\) 选择 \(k\) 个数对 \((i,j)\ (i\leq j)\),求 \(a_i-a_j\) 的和的最大值。

思路

\(50pts\):查询询问做一次超级钢琴,线段树区间加。

\(15pts(k=1)\):线段树维护区间答案,对于一个节点,答案可以是左右儿子的答案,也可以是左边最大-右边最小。

\(100pts\):

超级钢琴中,我们的”候补答案集合“思想是以每个点为起点做一次做三元组。

这显然不够带劲,在这里我们把起点也设成区间,那么也就是:\(S(l,r,l',r')\),其中 \([l,r]\) 是起点,\([l',r']\) 是终点。

但这样子选择区间后不方便分裂,那么我们考虑,什么样的区间分裂比较方便?

1.起点终点区间完全重合。(\(k=1\) 的做法)

2.起点终点区间没有交集。(起点取区间最大,终点去区间最小)

利用超级钢琴的思想维护优先队列即可。

这里分裂后我们的区间要满足上述两种条件,所以说最终区间如下。

维护很麻烦,但思路简单。

CODE

#include<bits/stdc++.h>
using namespace std; #define int long long
#define ls(i) i*2
#define rs(i) i*2+1 const int maxn=1e5+5;
const int inf=1e9; int n,m;
int a[maxn]; struct Ans
{
int val,x,y;
friend bool operator<(Ans a,Ans b){return a.val<b.val;}
friend bool operator>(Ans a,Ans b){return a.val>b.val;}
};
struct Grid
{
int val,id;
friend bool operator<(Grid a,Grid b){return a.val<b.val;}
friend bool operator>(Grid a,Grid b){return a.val>b.val;}
};
struct node1
{
int l,r,mx=-inf,mi=inf,mxid,miid,lazy;
Ans val;
}tree[maxn*10]; inline void updata(int p)
{
tree[p].val=max(tree[ls(p)].val,tree[rs(p)].val);
Ans tmp;
tmp.val=tree[ls(p)].mx-tree[rs(p)].mi;
tmp.x=tree[ls(p)].mxid,tmp.y=tree[rs(p)].miid;
tree[p].val=max(tree[p].val,tmp); if(tree[ls(p)].mi>tree[rs(p)].mi) tree[p].mi=tree[rs(p)].mi,tree[p].miid=tree[rs(p)].miid;
else tree[p].mi=tree[ls(p)].mi,tree[p].miid=tree[ls(p)].miid;
if(tree[ls(p)].mx<tree[rs(p)].mx) tree[p].mx=tree[rs(p)].mx,tree[p].mxid=tree[rs(p)].mxid;
else tree[p].mx=tree[ls(p)].mx,tree[p].mxid=tree[ls(p)].mxid;
}
inline void push_down(int p)
{
if(tree[p].l==tree[p].r)
{
tree[p].lazy=0;
return ;
}
tree[ls(p)].lazy+=tree[p].lazy;
tree[ls(p)].mx+=tree[p].lazy;
tree[ls(p)].mi+=tree[p].lazy; tree[rs(p)].lazy+=tree[p].lazy;
tree[rs(p)].mx+=tree[p].lazy;
tree[rs(p)].mi+=tree[p].lazy;
tree[p].lazy=0;
}
inline void build(int p,int l,int r)
{
tree[p].l=l;
tree[p].r=r;
if(l==r)
{
tree[p].mx=tree[p].mi=a[l];
tree[p].mxid=tree[p].miid=l;
tree[p].val.x=tree[p].val.y=l;
return ;
}
build(ls(p),l,l+r>>1);
build(rs(p),(l+r>>1)+1,r);
updata(p);
}
inline Grid gtmi(int p,int l,int r)
{
push_down(p);
if(tree[p].l>r||tree[p].r<l) return {inf,inf};
if(l<=tree[p].l&&tree[p].r<=r) return {tree[p].mi,tree[p].miid};
return min(gtmi(ls(p),l,r),gtmi(rs(p),l,r));
}
inline Grid gtmx(int p,int l,int r)
{
push_down(p);
if(tree[p].l>r||tree[p].r<l) return {-inf,0};
if(l<=tree[p].l&&tree[p].r<=r) return {tree[p].mx,tree[p].mxid};
return max(gtmx(ls(p),l,r),gtmx(rs(p),l,r));
}
inline Ans gtans(int p,int l,int r)
{
push_down(p);
if(tree[p].l>r||tree[p].r<l) return {-inf,0,0};
if(l<=tree[p].l&&tree[p].r<=r) return tree[p].val; int mid=l+r>>1;
Ans t=max(gtans(ls(p),l,r),gtans(rs(p),l,r));
Grid a=gtmx(ls(p),l,r),b=gtmi(rs(p),l,r);
return max(t,(Ans){a.val-b.val,a.id,b.id});
}
inline void insert(int p,int l,int r,int val)
{
push_down(p);
if(tree[p].r<l||tree[p].l>r) return ;
if(l<=tree[p].l&&tree[p].r<=r)
{
tree[p].lazy+=val;
tree[p].mx+=val;
tree[p].mi+=val;
return ;
}
insert(ls(p),l,r,val);
insert(rs(p),l,r,val);
updata(p);
} struct preAns
{
int al,ar,bl,br,val;
Ans Val()
{
if(ar<bl)
{
Grid a=gtmx(1,al,ar),b=gtmi(1,bl,br);
return {a.val-b.val,a.id,b.id};
}
else return gtans(1,al,ar);
}
friend bool operator<(preAns a,preAns b){return a.val<b.val;}
friend bool operator>(preAns a,preAns b){return a.val>b.val;}
}; priority_queue<preAns>que; signed main()
{
freopen("D.in","r",stdin);
freopen("D.out","w",stdout);
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]); build(1,1,n); while(m--)
{
int op,l,r,k;
scanf("%lld%lld%lld%lld",&op,&l,&r,&k);
if(op==1) insert(1,l,r,k);
else
{
preAns t;
t.al=t.bl=l,t.ar=t.br=r;
t.val=t.Val().val;
que.push(t);
int sum=0;
while(k--)
{
preAns now=que.top();
que.pop();
Ans val=now.Val();
int x=val.x,y=val.y;
sum+=now.val;
if(now.ar<now.bl)
{
if (x > now.al)
{
t=now;
t.ar=x-1;
t.val = t.Val().val;
que.push(t);
}
if (now.bl < y)
{
t=now;
t.ar=t.al=x;
t.br=y-1;
t.val = t.Val().val;
que.push(t);
}
if (y < now.br)
{
t=now;
t.ar=t.al=x;
t.bl=y+1;
t.val = t.Val().val;
que.push(t);
}
if (x < now.ar)
{
t=now;
t.al=x+1;
t.val = t.Val().val;
que.push(t);
}
}
else
{
if(x>now.al)
{
t=now;
t.ar=t.br=x-1;
t.val=t.Val().val;
que.push(t); t=now;
t.ar=x-1,t.bl=x;
t.val=t.Val().val;
que.push(t);
}
if(x!=y)
{
t.al=t.ar=t.bl=t.br=x;
t.val=t.Val().val;
que.push(t);
}
if(x<y-1)
{
t.al=t.ar=x;
t.bl=x+1;
t.br=y-1;
t.val=t.Val().val;
que.push(t);
}
if(y<now.br)
{
t.al=t.ar=x;
t.br=now.br;
t.bl=y+1;
t.val=t.Val().val;
que.push(t);
}
if(x<now.ar)
{
t=now;
t.al=t.bl=x+1;
t.val=t.Val().val;
que.push(t);
}
}
}
printf("%lld\n",sum);
while(!que.empty()) que.pop();
}
}
}

2023NOIP A层联测9 风信子+P2048 【NOI2010】 超级钢琴 2023的更多相关文章

  1. P2048 [NOI2010]超级钢琴(RMQ+堆+贪心)

    P2048 [NOI2010]超级钢琴 区间和--->前缀和做差 多次查询区间和最大--->前缀和RMQ 每次取出最大的区间和--->堆 于是我们设个3元组$(o,l,r)$,表示左 ...

  2. 洛谷 P2048 [NOI2010]超级钢琴 解题报告

    P2048 [NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为 ...

  3. 【题解】P2048 [NOI2010]超级钢琴

    [题解][P2048 NOI2010]超级钢琴 一道非常套路的题目.是堆的套路题. 考虑前缀和,我们要是确定了左端点,就只需要在右端区间查询最大的那个加进来就好了.\(sum_j-sum_{i-1}​ ...

  4. [洛谷P2048] [NOI2010] 超级钢琴

    洛谷题目链接:[NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号 ...

  5. 洛谷 P2048 [NOI2010]超级钢琴 || Fantasy

    https://www.luogu.org/problemnew/show/P2048 http://www.lydsy.com/JudgeOnline/problem.php?id=2006 首先计 ...

  6. Luogu P2048 [NOI2010]超级钢琴

    这道题题号很清新啊!第一次开NOI的题,因为最近考到了这道题的升级版. 我们先考虑\(O(n^2)\)大暴力,就是枚举前后端点然后开一个前缀和减一下即可. 然后引入正解,我们设一个三元组\(F(s,l ...

  7. P2048 [NOI2010]超级钢琴 (RMQ,堆)

    大意: 给定n元素序列a, 定义一个区间的权值为区间内所有元素和, 求前k大的长度在[L,R]范围内的区间的权值和. 固定右端点, 转为查询左端点最小的前缀和, 可以用RMQ O(1)查询. 要求的是 ...

  8. P2048 [NOI2010]超级钢琴

    传送门 考虑维护前缀和 $sum[i]$ 那么对于每一个位置 $i$ ,左端点为 $i$ 右端点在 $[i+L-1,i+R-1]$ 区间的区间最大值容易维护 维护三元组 $(o,l,r)$ ,表示左端 ...

  9. 洛谷 P2048 [NOI2010]超级钢琴(优先队列,RMQ)

    传送门 我们定义$(p,l,r)=max\{sum[t]-sum[p-1],p+l-1\leq t\leq p+r-1 \}$ 那么因为对每一个$p$来说$sum[p-1]$是一个定值,所以我们只要在 ...

  10. 洛谷P2048 [NOI2010]超级钢琴 题解

    2019/11/14 更新日志: 近期发现这篇题解有点烂,更新一下,删繁就简,详细重点.代码多加了注释.就酱紫啦! 正解步骤 我们需要先算美妙度的前缀和,并初始化RMQ. 循环 \(i\) 从 \(1 ...

随机推荐

  1. PPT或Visio比较舒适的RGB配色参数

    1.187 204 235 2.222 156 83 3.117 156 83 4.64 116 52 5.117 121 74 6.69 137 148 7.182 194 154 8.207 19 ...

  2. Docker高级篇:实战Redis集群!从3主3从变为4主4从

    通过前面两篇,我们学会了三主三从的Redis集群搭建及主从容错切换迁移,随着业务增加,可能会有主从扩容的,所以,本文我们来实战主从扩容 PS本系列:<Docker学习系列>教程已经发布的内 ...

  3. 【YashanDB知识库】字段加上索引后,SQL查询不到结果

    [标题]字段加上索引后,SQL查询不到结果 [问题分类]索引功能使用 [关键字]索引,SQL查询,时间类型,vachar字符类型 [问题描述]字段加上索引后,SQL查询不到结果. [问题原因分析]当前 ...

  4. if else 代码优化实战

    前言 介绍几种方法,不使用if else语句也能做条件判断. 一:使用枚举 首先定义一个公用接口 RoleOperation,表示不同角色所能做的操作 package com.gavin.enums; ...

  5. 6.23 Web日志分析&php&自动化工具

    应急响应的目的:保护阶段.分析.复现.修复.建议 分析出攻击时间,攻击操作,攻击结果,安全修复等给出合理方案: 知识点 熟悉常见web安全攻击技术 熟悉日志启用及存储查看 熟悉日志中记录数据库分类及分 ...

  6. Go runtime 调度器精讲(三):main goroutine 创建

    原创文章,欢迎转载,转载请注明出处,谢谢. 0. 前言 回顾下 上一讲 的内容.主线程 m0 蓄势待发,准备干活.g0 为 m0 提供了执行环境,P 和 m0 绑定,为 m0 提供活,也就是 goro ...

  7. C# 开源教程带你轻松掌握数据结构与算法

    前言 在项目开发过程中,理解数据结构和算法如同掌握盖房子的秘诀.算法不仅能帮助我们编写高效.优质的代码,还能解决项目中遇到的各种难题. 给大家推荐一个支持C#的开源免费.新手友好的数据结构与算法入门教 ...

  8. HDLC报文简单分析

    最近在学习HDLC协议,从刚开始的一窍不通到现在的懵懵懂懂,下面分享一段报文解析,给初学者一点点经验的分析. 报文:7E A0 57 03 02 B8 4B 5B E6 E7 00 C4 01 C1 ...

  9. 前端VUE调用后台接口,实现基本增删改查

    设置接口请求 作为一个后台,个人一点感想:前端现在都是组件化开发,会看文档基本功能就能实现. js文件 import request from '@/router/axios' // 查询 expor ...

  10. JOI Open 2016

    T1 JOIRIS 你在玩俄罗斯方块,游戏区域是一个宽度为 \(n\),高度足够大的矩形网格.初始时第 \(i\) 列有 \(a_i\) 个方块. 给定参数 \(k\),你可以做不超过 \(10^4\ ...