python之异步任务框架Celery
官网参考:
Celery 官网:http://www.celeryproject.org/
Celery 官方文档英文版:http://docs.celeryproject.org/en/latest/index.html
Celery 官方文档中文版:http://docs.jinkan.org/docs/celery/
介绍:
"""
1)可以不依赖任何服务器,通过自身命令,启动服务(内部支持socket)
2)celery服务为为其他项目服务提供异步解决任务需求的
注:会有两个服务同时运行,一个是项目服务,一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的需求 人是一个独立运行的服务 | 医院也是一个独立运行的服务
正常情况下,人可以完成所有健康情况的动作,不需要医院的参与;但当人生病时,就会被医院接收,解决人生病问题
人生病的处理方案交给医院来解决,所有人不生病时,医院独立运行,人生病时,医院就来解决人生病的需求
"""
Celery架构图:
Celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和 任务执行结果存储(task result store)组成。

消息中间件
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等
任务执行单元
Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
任务结果存储
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等
三、使用场景
异步执行:解决耗时任务
延迟执行:解决延迟任务
定时执行:解决周期(周期)任务
四、Celery的安装配置
pip install celery
消息中间件:RabbitMQ/Redis
app=Celery('任务名', broker='xxx', backend='xxx')
五、两种celery任务结构:提倡用包管理,结构更清晰
# 如果 Celery对象:Celery(...) 是放在一个模块下的
# 1)终端切换到该模块所在文件夹位置:scripts
# 2)执行启动worker的命令:celery worker -A 模块名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:模块名随意
# 如果 Celery对象:Celery(...) 是放在一个包下的
# 1)必须在这个包下建一个celery.py的文件,将Celery(...)产生对象的语句放在该文件中
# 2)执行启动worker的命令:celery worker -A 包名 -l info -P eventlet
# 注:windows系统需要eventlet支持,Linux与MacOS直接执行:celery worker -A 模块名 -l info
# 注:包名随意
七、Celery执行异步任务
包架构封装
project
├── celery_task # celery包
│ ├── __init__.py # 包文件
│ ├── celery.py # celery连接和配置相关文件,且名字必须交celery.py
│ └── tasks.py # 所有任务函数
├── add_task.py # 添加任务
└── get_result.py # 获取结果
celery.py 基本配置
# 1)创建app + 任务 # 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet # 3)添加任务:手动添加,要自定义添加任务的脚本,右键执行脚本 # 4)获取结果:手动获取,要自定义获取任务的脚本,右键执行脚本 from celery import Celery
# 无密码
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
# 有密码:
broker = 'redis://:123@127.0.0.1:6379/1'
backend = 'redis://:123@127.0.0.1:6379/2'
app = Celery(broker=broker, backend=backend, include=['celery_task.tasks'])
'''
broker : 任务仓库
backend : 任务结果仓库
include :任务(函数)所在文件
'''
tasks.py 添加任务
from .celery import app @app.task
def add(n1,n2):
res = n1+n2
print('n1+n2 = %s' % res)
return res @app.task
def low(n1,n2):
res = n1-n2
print('n1-n2 = %s' % res)
return res
add_task.py 添加立即、延迟任务
from celery_task import tasks # delay :添加立即任务
# apply_async : 添加延迟任务
# eta : 执行的utc时间 # 添加立即执行任务
t1 = tasks.add.delay(10, 20)
t2 = tasks.low.delay(100, 50)
print(t1.id) # 添加延迟任务
from celery_package.tasks import jump
from datetime import datetime,timedelta # 秒
def eta_second(second):
ctime = datetime.now() # 当前时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp()) # 当前UTC时间
time_delay = timedelta(seconds=second) # 秒
return utc_ctime + time_delay # 当前时间+往后延迟的秒
# 天
def eta_days(days):
ctime = datetime.now() # 当前时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp()) # 当前UTC时间
time_delay = timedelta(days=days) # 天
return utc_ctime + time_delay # 当前时间+往后延迟的天 jump.apply_async(args=(20,5), eta=eta_second(10)) # 10秒后执行
jump.apply_async(args=(20,5), eta=eta_days(1)) # 1天后执行
get_result.py 获取结果
from celery_task.celery import app from celery.result import AsyncResult id = '21325a40-9d32-44b5-a701-9a31cc3c74b5'
if __name__ == '__main__':
async = AsyncResult(id=id, app=app)
if async.successful():
result = async.get()
print(result)
elif async.failed():
print('任务失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
九、高级使用
celery.py 定时任务配置(循环的)
特点:
添加任务的终端关闭之后,停止添加
celery服务端关闭后,把关闭之后未执行的任务都执行一遍,然后继续接收任务
# 1)创建app + 任务 # 2)启动celery(app)服务:
# 注):-A 表示相对路径,所以一定先进入celery_task所在包
-l 表示打印到日志 info 级别
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet # 3)添加任务:自动添加任务,所以要启动一个添加任务的服务
# 命令:celery beat -A celery_task -l info # 4)获取结果 from celery import Celery # 无密码
broker = 'redis://127.0.0.1:6379/1'
backend = 'redis://127.0.0.1:6379/2'
# 有密码:
broker = 'redis://:123@127.0.0.1:6379/1'
backend = 'redis://:123@127.0.0.1:6379/2'
app = Celery(broker=broker, backend=backend, include=['celery_task.tasks']) # 时区
app.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
app.conf.enable_utc = False # 自动任务的定时配置
from datetime import timedelta
from celery.schedules import crontab app.conf.beat_schedule = {
# 定时任务名字
'fall_task': {
'task': 'celery_task.tasks.fall',
'args':(30,20),
'schedule': timedelta(seconds=3), # 3秒后执行
# 'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
}
} '''
fall_task:任务名自定义
task:任务来源
args:任务参数
schedule:定时时间
''' 'schedule': crontab(hour=8, day_of_week=1), # 每周一早八点
'''
minute : 分钟
hour :小时
day_of_week :礼拜
day_of_month:月
month_of_year:年
'''
tasks.py
from .celery import app @app.task
def fall(n1,n2):
res = n1/n2
print('n1 /n2 = %s' % res)
return res
get_result.py
from celery_task.celery import app from celery.result import AsyncResult id = '21325a40-9d32-44b5-a701-9a31cc3c74b5'
if __name__ == '__main__':
async = AsyncResult(id=id, app=app)
if async.successful():
result = async.get()
print(result)
elif async.failed():
print('任务失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
参考:https://www.cnblogs.com/guyouyin123/p/12420344.html
python之异步任务框架Celery的更多相关文章
- Python开源异步并发框架
Python开源异步并发框架的未来 2014年3月30日,由全球最大的中文IT社区CSDN主办的“开源技术大会·” (Open Source Technology Conference ,简称OSTC ...
- celery 分布式异步任务框架(celery简单使用、celery多任务结构、celery定时任务、celery计划任务、celery在Django项目中使用Python脚本调用Django环境)
一.celery简介: Celery 是一个强大的 分布式任务队列 的 异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行.我们通常使用它来实现异步任务(async tas ...
- Python 开源异步并发框架的未来
http://segmentfault.com/a/1190000000471602 开源 Python 是开源的,介绍的这几个框架 Twisted.Tornado.Gevent 和 tulip 也都 ...
- Django(41)详解异步任务框架Celery
celery介绍 Celery是由Python开发.简单.灵活.可靠的分布式任务队列,是一个处理异步任务的框架,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务.Celery ...
- celery异步任务框架
目录 Celery 一.官方 二.Celery异步任务框架 Celery架构图 消息中间件 任务执行单元 任务结果存储 三.使用场景 四.Celery的安装配置 五.两种celery任务结构:提倡用包 ...
- Python 并行分布式框架 Celery
Celery 简介 除了redis,还可以使用另外一个神器---Celery.Celery是一个异步任务的调度工具. Celery 是 Distributed Task Queue,分布式任务队列,分 ...
- 【转】Python 并行分布式框架 Celery
原文链接:https://blog.csdn.net/freeking101/article/details/74707619 Celery 官网:http://www.celeryproject.o ...
- Celery+python+redis异步执行定时任务
我之前的一篇文章中写了[Celery+django+redis异步执行任务] 博文:http://blog.csdn.net/apple9005/article/details/54236212 你会 ...
- python 异步Web框架sanic
我们继续学习Python异步编程,这里将介绍异步Web框架sanic,为什么不是tornado?从框架的易用性来说,Flask要远远比tornado简单,可惜flask不支持异步,而sanic就是类似 ...
- flask - fastapi (python 异步API 框架 可以自动生成swagger 文档) 常用示例 以及整合euraka nacos
flask - fastapi (python 异步API 框架 可以自动生成swagger 文档) 常用示例: 之前使用 flask 需要手动写文档, 这个可以自动生成, fastapi ...
随机推荐
- C++性能优化——能用array就不要用unordered_map作为查询表
unordered_map需要哈希值计算和表查询的开销,当key值为整数且连续,直接用数组作为查询表具有更高的效率. #include <iostream> #include <ch ...
- JavaScript – 用 Generator 运行异步函数 & await async
前言 上一篇 JavaScript – Promise 介绍了如何用 JS 编写可读性高的异步函数. 但其实呢, Promise 还不是最好的. 在 es6 之前, Promise 比起回调地狱是好了 ...
- .NET 8 + Vue/UniApp 高性能前后端分离框架
前言 作为一名开发者,我们知道能够简化开发流程.提升工作效率的工具是至关重要的. 推荐一款前后端分离框架 Admin.NET(ZRAdmin),它不仅可以满足项目开发的需求,还应用了一些新的特性,如R ...
- Linux内存管理2.6 -反向映射RMAP(最终版本)
所谓反向映射是相对于从虚拟地址到物理地址的映射,反向映射是从物理页面到虚拟地址空间VMA的反向映射. RMAP能否实现的基础是通过struct anon_vma.struct anon_vma_cha ...
- 5.6 函数y=Asin(ωx+φ)的图像和性质
\({\color{Red}{欢迎到学科网下载资料学习 }}\) [基础过关系列]2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019) \({\color{Red}{ 跟贵哥 ...
- token有⼀定的失效性,过期了该怎么做?
token 失效分为主动失效和被动失效 主动失效 就是自己设置函数检查token是否失效了, 主要步骤 :1 1.在登录的时候记录存储token的时间, 2. 在request文件,设置一个函数,用来 ...
- springboot2.X动态修改log4j2日志级别
利用springboot提供的 spring-boot-starter-actuator 包可以实现动态修改log4j2日志级别的功能 添加依赖 添加依赖包 <dependency> &l ...
- 好上好信息 API 微服务集群在 KubeSphere 的部署实践
作者:徐鹏.深圳好上好信息(001298).技术副总监.负责云服务器团队的架构设计及业务开发,拥抱云原生,乐于分享,终生学习. 公司简介 好上好信息(001298)是中国大陆一家致力于为中国智造提供全 ...
- python+ffmpeg视频转码转格式
本文转发来自:https://blog.csdn.net/KH_FC/article/details/115771126 废话 python目前自己也是在学习当中,对python也不是特别精通,写视频 ...
- JS 转盘抽奖效果
阅读原文,微信扫描二维码, 手机关注公共号酒酒酒酒,搜索 JS 转盘抽奖效果 效果图 前置条件: 开发环境:windows 开发框架:js 编辑器:HbuilderX 正文开始 <!DOCTYP ...