二叉排序树(BST)

需求

给定数列{7,3,10,12,5,1,9},要求能够高效的完成对数据的查询和添加

思路三则

  1. 使用数组,缺点:插入和排序速度较慢

  2. 链式存储,添加较快,但查找速度慢

  3. 使用二叉排序树

基本介绍

对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大

图解

步骤

  1. 从数列取出第一个数成为根节点

  2. 取出第二个数,从根结点开始比较,大于当前节点,与右子节点比较,小于当前节点与左子节点比较

  3. 直到放到叶子节点

  4. 取出剩余的数值,重复上述步骤

建立二叉排序树

代码实现:BinarySortTree.java

package com.why.binary_sort_tree;

/**
* @Description TODO 建立二叉排序树
* @Author why
* @Date 2020/12/1 14:38
* Version 1.0
**/
public class BinarySortTreeDemo {
   public static void main(String[] args) {
       int[] arr = {7,3,10,12,5,1,9};
       BinarySortTree bst = new BinarySortTree();
       for (int i = 0; i < arr.length; i++) {
           Node node = new Node(arr[i]);
           bst.add(node);
      }
       System.out.println("中序遍历二叉排序树;");
       bst.midOrder();
  }
}

/**
* 二叉排序树
*/
class BinarySortTree{
   private Node root;

   /**
    * 添加节点
    * @param node
    */
   public void add(Node node){
       if (root == null){//直接放上
           root = node;
      }else {
           root.add(node);
      }
  }

   /**
    * 中序遍历
    */
   public void midOrder(){
       if (root != null){
           root.midOrder();
      }else {
           System.out.println("二叉排序树为空");
      }
  }
}
/**
* 节点类
*/
class Node{
   int value;
   Node left;
   Node right;

   public Node(int value) {
       this.value = value;
  }

   /**
    * 添加节点,递归形式,需满足二叉排序树的要求
    * @param node
    */
   public void add(Node node){
       if (node == null){
           return;
      }
       //判断传入的节点的值和当前子树的根节点的值的关系
       if (node.value < this.value){
           if (this.left == null){//当前节点左子节点为空
               this.left = node;
          }else {//不为空,递归向左子树添加
               this.left.add(node);
          }
      }else {
           if (this.right == null){
               this.right = node;
          }else {
               this.right.add(node);
          }
      }
  }

   /**
    * 中序遍历
    */
   public void midOrder(){
       if (left != null){
           this.left.midOrder();
      }
       System.out.println(this);
       if (this.right != null){
           this.right.midOrder();
      }
  }

   @Override
   public String toString() {
       return "Node{" +
               "value=" + value +
               '}';
  }
}

二叉排序树删除

删除的节点是叶子节点

思路

  1. 先找到要删除的节点targetNode

  2. 找到targetNode的父节点parent

  3. 确定targetNode是parent的左子节点还是右子节点

  4. 根据前面的情况对应删除

删除的节点只有一棵子树的情况

思路

  1. 先找到要删除的节点targetNode

  2. 找到targetNode的父节点parent

  3. 确定targetNode的子节点是左子节点还是右子节点

  4. 确定targetNode是parent的左子节点还是右子节点

  5. 如果targetNode有左子节点

    • targetNode是parent的左子节点 parent.left = targetNode.left

    • targetNode是parent的右子节点parent.right = tsrgetNode.left

  6. 如果targetNode有右子节点

    • targetNode是parent的左子节点parent.left = targetNode.right

    • targetNode是parent的右子节点parent.right = psrent.right

删除的节点有两颗子树

思路

  1. 先找到要删除的节点targetNode

  2. 找到targetNode的父节点parent

  3. 从targetNode的右子树找到最小的节点

  4. 用一个临时变量,将最小的节点的值保存temp

  5. 删除最小节点

  6. targetNode.value = temp.value

代码实现
package com.why.binary_sort_tree;

/**
* @Description TODO 建立二叉排序树
* @Author why
* @Date 2020/12/1 14:38
* Version 1.0
**/
public class BinarySortTreeDemo {
   public static void main(String[] args) {
       int[] arr = {7,3,10,12,5,1,9,0,2,4,6,8,};
       BinarySortTree bst = new BinarySortTree();
       for (int i = 0; i < arr.length; i++) {
           Node node = new Node(arr[i]);
           bst.add(node);
      }
       System.out.println("中序遍历二叉排序树;");
       bst.midOrder();

       System.out.println("删除后");
       bst.deleteNode(5);
       bst.midOrder();

  }
}

/**
* 二叉排序树
*/
class BinarySortTree{
   private Node root;

   /**
    * 添加节点
    * @param node
    */
   public void add(Node node){
       if (root == null){//直接放上
           root = node;
      }else {
           root.add(node);
      }
  }

   /**
    * 中序遍历
    */
   public void midOrder(){
       if (root != null){
           root.midOrder();
      }else {
           System.out.println("二叉排序树为空");
      }
  }

   /**
    * 查找需删除的节点
    * @param value
    * @return
    */
   public Node search(int value){
       if (root == null){
           return null;
      }else {
           return root.search(value);
      }
  }

   /**
    * 查找父节点
    * @param value
    * @return
    */
   public Node searchParent(int value){
       if (root == null){
           return null;
      }else {
           return root.searchParent(value);
      }
  }

   public void deleteNode(int value){
       if (root == null){
           return;
      }else {
           //找到需删除的节点
           Node targetNode = search(value);
           if (targetNode == null){//未找到
               return;
          }
           //如果二叉排序树只有一个节点
           if (root.left == null && root.right == null){
               return;
          }

           //查找需删除的节点的父节点
           Node parent = searchParent(value);
           if (targetNode.left == null && targetNode.right == null){//删除的节点是叶子节点
               //判断targetNode是父节点的左子节点还是右子节点
               if (parent.left != null && parent.left.value == value){//是左子节点
                   parent.left = null;
              }else if (parent.right != null && parent.right.value == value){//是右子节点
                   parent.right = null;
              }
          }else if ((targetNode.left != null && targetNode.right == null) ||
                  (targetNode.right != null && targetNode.left == null)) {//只有一棵子树
                   //确定targetNode的节点是左节点还是右节点
                   if (targetNode.left != null) {//左子节点
                       if (parent != null){//非根节点
                           //确定targetNode是parent的左子节点还是右子节点
                           if (parent.left.value == value) {//左子节点
                               parent.left = targetNode.left;
                          } else {//右子节点
                               parent.right = targetNode.left;
                          }
                      }else {
                           root = targetNode.left;
                      }
                  } else {//右子节点
                       if (parent != null){
                           //确定targetNode是parent的左子节点还是右子节点
                           if (parent.left.value == value) {//左子节点
                               parent.left = targetNode.right;
                          } else {//右子节点
                               parent.right = targetNode.right;
                          }
                      }else {
                           root = targetNode.right;
                      }
                  }
          }else {//删除的节点有两颗子树
               //找到最小值并删除
               int minValue = deleteRightMin(targetNode.right);
               //将最小值赋值给targetNode.value
               targetNode.value = minValue;
          }
      }
  }

   /**
    * 寻找最小值
    * @param node
    * @return
    */
   public int deleteRightMin(Node node){
       Node target = node;
       while (target.left != null){
           target = target.left;
      }
       //这时target指向最小节点
       //删除最小节点
       deleteNode(target.value);
       //返回最小节点的value
       return target.value;
  }
}
/**
* 节点类
*/
class Node{
   int value;
   Node left;
   Node right;

   public Node(int value) {
       this.value = value;
  }

   /**
    * 添加节点,递归形式,需满足二叉排序树的要求
    * @param node
    */
   public void add(Node node){
       if (node == null){
           return;
      }
       //判断传入的节点的值和当前子树的根节点的值的关系
       if (node.value < this.value){
           if (this.left == null){//当前节点左子节点为空
               this.left = node;
          }else {//不为空,递归向左子树添加
               this.left.add(node);
          }
      }else {
           if (this.right == null){
               this.right = node;
          }else {
               this.right.add(node);
          }
      }
  }

   /**
    * 中序遍历
    */
   public void midOrder(){
       if (left != null){
           this.left.midOrder();
      }
       System.out.println(this);
       if (this.right != null){
           this.right.midOrder();
      }
  }

   @Override
   public String toString() {
       return "Node{" +
               "value=" + value +
               '}';
  }

   /**
    * 寻找需要删除的节点
    * @param value
    * @return
    */
   public Node search(int value){
       if (value == this.value){//找到
           return this;
      }else if (value < this.value){//向左子树查找
           if (this.left == null){
               return null;
          }
           return this.left.search(value);
      }else {//向右子树查找
           if (this.right == null){
               return null;
          }
           return this.right.search(value);
      }
  }

   /**
    * 查找需要删除节点的父节点
    * @param value
    * @return
    */
   public Node searchParent(int value){
       if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)){
           //找到父节点返回当前节点
           return this;
      }else {
           //如果查找的值小于当前节点的值
           if (value < this.value && this.left != null){//左子树查找
               return this.left.searchParent(value);
          }else if (value >= this.value && this.right != null){//右子树查找
               return this.right.searchParent(value);
          }else {
               return null;//没有找到父节点
          }
      }
  }
}

Java数据结构(十三)—— 二叉排序树(BST)的更多相关文章

  1. Java数据结构和算法(五)二叉排序树(BST)

    Java数据结构和算法(五)二叉排序树(BST) 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 二叉排序树(Binary S ...

  2. 数据结构------------------二叉查找树(BST)的java实现

    数据结构------------------二叉查找树(BST)的java实现 二叉查找树(BST)是一种能够将链表插入的灵活性和有序数组查找的高效性相结合的一种数据结构.它的定义如下: 二叉查找树是 ...

  3. 一文掌握关于Java数据结构所有知识点(欢迎一起完善)

    在我们学习Java的时候,很多人会面临我不知道继续学什么或者面试会问什么的尴尬情况(我本人之前就很迷茫).所以,我决定通过这个开源平台来帮助一些有需要的人,通过下面的内容,你会掌握系统的Java学习以 ...

  4. 二叉排序树(BST)构造与应用

             二叉排序树(BST)构造与应用       本文取自<数据结构与算法>(C语言版)(第三版).出版社是清华大学出版社.       本博文作为学习资料整理. 源码是VC+ ...

  5. Java数据结构和算法(一)树

    Java数据结构和算法(一)树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 前面讲到的链表.栈和队列都是一对一的线性结构, ...

  6. Java数据结构和算法(二)树的基本操作

    Java数据结构和算法(二)树的基本操作 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 一.树的遍历 二叉树遍历分为:前序遍 ...

  7. Java数据结构和算法(七)--AVL树

    在上篇博客中,学习了二分搜索树:Java数据结构和算法(六)--二叉树,但是二分搜索树本身存在一个问题: 如果现在插入的数据为1,2,3,4,5,6,这样有序的数据,或者是逆序 这种情况下的二分搜索树 ...

  8. 【java 数据结构】还不会二叉树?一篇搞定二叉树

    二叉树是我们常见的数据结构之一,在学习二叉树之前我们需要知道什么是树,什么是二叉树,本篇主要讲述了二叉树,以及二叉树的遍历. 你能get到的知识点? 1.树的介绍 2.二叉树的介绍 3.二叉树遍历的四 ...

  9. 二叉排序树(BST)创建,删除,查找操作

    binary search tree,中文翻译为二叉搜索树.二叉查找树或者二叉排序树.简称为BST 一:二叉搜索树的定义 他的定义与树的定义是类似的,也是一个递归的定义: 1.要么是一棵空树 2.如果 ...

  10. Java数据结构之队列的实现以及队列的应用之----简单生产者消费者应用

    Java数据结构之---Queue队列 队列(简称作队,Queue)也是一种特殊的线性表,队列的数据元素以及数据元素间的逻辑关系和线性表完全相同,其差别是线性表允许在任意位置插入和删除,而队列只允许在 ...

随机推荐

  1. UVA12558 埃及分数 Egyptian Fractions

    题意描述 题目描述的翻译挺清楚的了. 和原题的区别是多了禁用的分母.(还有毒瘤输入输出) 算法分析 显然这道题没有什么很好的数学方法来解决,所以可以使用搜索. 由于不确定深度,深搜显然无穷无尽. 所以 ...

  2. 849. Maximize Distance to Closest Person ——weekly contest 87

    849. Maximize Distance to Closest Person 题目链接:https://leetcode.com/problems/maximize-distance-to-clo ...

  3. js 自适应手机电脑 轮播图

    自己写了一个javascript的可循环轮播图,支持手机滑动,不过代码着实小白,全局变量,函数调用满天飞,研究别的代码规范好的轮播图插件,表示看得懂但是写不出.. HTML: <div id=& ...

  4. 使用LSV进行通视分析教程

    在LSV"分析"菜单栏中点击"通视分析" 在地面或者建筑物表面选择一点,然后鼠标移动到另一个位置点击结束,即可判断出两点间是否有障碍物,是否可见.通视分析结果显 ...

  5. day89:luffy:使用Celery完成我的订单超时取消&Polyv视频加密播放

    目录 1.我的订单超时取消 2.PoliV视频播放 1.我的订单超时取消 使用Celery完成超时取消功能 mycelery/order/tasks.py from mycelery.main imp ...

  6. 包装类和基本数据类型(以int和Integer为例)

    Java的包装类就是可以直接将简单类型的变量表示为一个类.java共有六个包装类:Integer,Long,Float,Double,Character,Boolean,对应六种基本数据类型. 包装类 ...

  7. MySQL慢查询开启、日志分析(转)

    说明 Mysql的查询讯日志是Mysql提供的一种日志记录,它用来记录在Mysql中响应时间超过阈值的语句 具体指运行时间超过long_query_time值得SQL,则会被记录到慢查询日志中.lon ...

  8. arm64大服务器安装ubuntu18看不到安装界面

    前言 最近在使用arm的大服务器需要用到ubuntu相关的一些东西,在操作系统安装过程中遇到了一些问题 记录 华为鲲鹏服务器 这个默认安装centos的都很顺利,安装ubuntu18最新的,impi就 ...

  9. 3-colorability

    目录 1.1 3-colorability 1.1.1 3元可满足规约到3着色 1.1.2 证明充分和必要性 1.1 3-colorability 一个图的三着色问题:要使得边两头的结点颜色互不相同. ...

  10. Python_scrapyRedis零散

    1. # Redis 1.解压,配环境变量 2.win上设置自启动 redis-server --service-install D:\redis\redis.windows.conf --logle ...