Link

题目描述

给定一行 \(n\) 个非负整数 \(a[1]..a[n]\) 。现在你可以选择其中若干个数,但不能有超过 \(k\) 个连续的数字被选择。你的任务是使得选出的数字的和最大。

输入格式

第一行两个整数 \(n\) ,\(k\)

以下n行,每行一个整数表示 \(a[i]\)。

输出格式

输出一个值表示答案。

输入输出样例

输入 #1

5 2
1
2
3
4
5

输出 #1

12

说明/提示

对于20%的数据,n <= 10

对于另外20%的数据, k = 1

对于60%的数据,n <= 1000

对于100%的数据,1 <= n <= 100000,1 <= k <= n,0 <= 数字大小 <= 1,000,000,000

时间限制500ms


没错,我又来水题啦。

首先,我们会想到 O(\(n^2\) ) 的dp

设 \(f[i]\) 表示从前 \(i\) 个数的最大价值。

那么就会有转移

\(f[i] = max(f[i], f[i-k-1] + sum[i] - sum[i-k+1-1])\) (后面我拆开写主要是为了好理解,实际上化简一下就可以)。

\(k\) 是我们枚举的要选的连续的数的个数,即区间长度。

这样肯定会 TLE 得啦。

但有没有觉得这个柿子很熟悉,这不就是求 \(i-k-1 , i\) 的最大值。

直接上单调队列优化,记得一开始要把前 \(k\) 个点先入队,在去更新其他的。

我们更新 \(i\) 的时候,要先把 \(i\) 入队在更新,因为他可以取到 \(i\) 也就相当于不选这个数。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define int long long
int n,k,x,head,tail;
int sum[100010],f[100010],q[100010];
inline int read()
{
int s = 0, w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s =s * 10+ch - '0'; ch = getchar();}
return s * w;
}
signed main()
{
n = read(); k = read();
for(int i = 1; i <= n; i++)
{
x = read();
sum[i] = sum[i-1] + x;//维护一个前缀和
}
head = 1, tail = 0;
q[++tail] = 0;
for(int i = 1; i <= k; i++)//先把前k的点入队
{
f[i] = sum[i];
while(head <= tail && f[q[tail] - 1] - sum[q[tail]] <= f[i-1] - sum[i]) tail--;
q[++tail] = i;
}
for(int i = k+1; i <= n; i++)
{
while(head <= tail && q[head] < i - k) head++;//把过期的扔掉
while(head <= tail && f[q[tail]-1] - sum[q[tail]] <= f[i-1] - sum[i]) tail--;//把不优的情况也扔掉
q[++tail] = i; //先入队在更新
f[i] = f[q[head]-1] + sum[i] - sum[q[head]];
}
printf("%lld\n",f[n]);
return 0;
}

另外还有一道双倍经验的题 P2627 [USACO11OPEN]Mowing the Lawn G

这个题和上面那道题差不多,只不过有个小细节是要让节点先更新在入队(至于为什么自己可以想想)。

P2034 选择数字 / P2627 [USACO11OPEN]Mowing the Lawn G的更多相关文章

  1. 洛谷P2627 [USACO11OPEN]Mowing the Lawn G (单调队列优化DP)

    一道单调队列优化DP的入门题. f[i]表示到第i头牛时获得的最大效率. 状态转移方程:f[i]=max(f[j-1]-sum[j])+sum[i] ,i-k<=j<=i.j的意义表示断点 ...

  2. P2034 选择数字

    P2034 选择数字 题目描述 给定一行n个非负整数a[1]..a[n].现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择.你的任务是使得选出的数字的和最大. 错误日志: longlong ...

  3. 「单调队列优化DP」P2034 选择数字

    「单调队列优化DP」P2034 选择数字 题面描述: 给定一行n个非负整数a[1]..a[n].现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择.你的任务是使得选出的数字的和最大. 输入格 ...

  4. P2034 选择数字——线性dp(单调队列优化)

    选择数字 题目描述 给定一行 \(n\) 个非负整数 \(a[1]...a[n]\) .现在你可以选择其中若干个数,但不能有超过 \(k\) 个连续的数字被选择.你的任务是使得选出的数字的和最大. 输 ...

  5. codevs 3327 选择数字

    3327 选择数字  时间限制: 1 s  空间限制: 256000 KB 题目描述 Description 给定一行n个非负整数a[1]..a[n].现在你可以选择其中若干个数,但不能有超过k个连续 ...

  6. input只读属性 设置和移除 选择数字

    设置只读属性 $('#stage').attr("readonly", "readonly"); 移除 只读属性  $("input").r ...

  7. codevs3327选择数字(单调队列优化)

    3327 选择数字  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond     题目描述 Description 给定一行n个非负整数a[1]..a[n].现 ...

  8. 科普:为什么 String hashCode 方法选择数字31作为乘子

    作者:coolblog 此文章转载自:https://segmentfault.com/a/1190000010799123 1. 背景 某天,我在写代码的时候,无意中点开了 String hashC ...

  9. 选择数字(codevs 3327)

    题目描述 Description 给定一行n个非负整数a[1]..a[n].现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择.你的任务是使得选出的数字的和最大. 输入描述 Input De ...

随机推荐

  1. Python post请求模拟登录淘宝并爬取商品列表

    一.前言 大概是一个月前就开始做淘宝的爬虫了,从最开始的用selenium用户配置到selenium模拟登录,再到这次的post请求模拟登录.一共是三篇博客,记录了我爬取淘宝网的经历.期间也有朋友向我 ...

  2. 【小白学PyTorch】5 torchvision预训练模型与数据集全览

    文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.mo ...

  3. rake

    ruby-rake https://rubygems.org/gems/rake 官方文档 https://ruby.github.io/rake/ http://docs.seattlerb.org ...

  4. [BUUOJ记录] [BJDCTF 2nd]old-hack & Schrödinger & elementmaster

    三道比较简单的的题放一起一写,old-hack是ThinkPHP框架的一个nday,Schrödinger和elementmaster没啥考点,就是脑洞 一.old-hack 进入题目没发现什么Hi ...

  5. Git 实用操作:撤销 Commit 提交

    有的时候,改完代码提交 commit 后发现写得实在太烂了,连自己的都看不下去,与其修改它还不如丢弃重写.怎么操作呢? 使用 reset 撤销 如果是最近提交的 commit 要丢弃重写可以用 res ...

  6. HTML-CSS-JS Prettify 代码格式化插件

    前提:已经安装 node.js.安装插件 HTML-CSS-JS Prettify,修改node路径,即可通过单击右键 HTML-CSS-JS Prettify 中的 Prettify Code 使用 ...

  7. SpringBoot 消息国际化配置

    一.目的 针对不同地区,设置不同的语言信息. SpringBoot国际化配置文件默认放在classpath:message.properties,如果自定义消息配置文件,需要application.p ...

  8. NetCore微服务实战体系:日志管理

    一. 起始 进入NetCore时代,日志的使用有了很大的变化,因为跨平台以及虚拟化技术的使用,日志不能够再像Framework的方式直接记录在文本,文本其实也可以,但是日志的管理以及查看都不太方便.L ...

  9. VS调试出现解决 尝试加载 Oracle 客户端库时引发 BadImageFormatException。如果在安装 32 位 Oracle 客户端组件的情况下以 64 位模式运行,将出现此问题

  10. 一次MySQL索引失效引发的思考

    最近公司做了一个千万数量级的项目,由于要求性能比较高,每一个相对慢的查询都需要优化,项目经理是一个比较有经验的开发人员,基本上遇到问题都会先自行处理:或自己分析原因或网络寻求帮助. 但是项目平稳运行一 ...